Skip to main content
Log in

Stabilization of Metastable States Generated via an Affordable Mechanochemical Route for Functional Nanocomposites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This short review introduces recent preparative processes of functional nanocomposites via mechanochemical routes. Three case-studies published by the present author and his colleagues are centered, i.e., (i) amorphization of molecular crystals to the state of molecular dispersion for pharmaceutics, (ii) nano-glassy and nano-crystalline complex oxides for electromagnetic applications by changing conditions of mechanical stressing and subsequent thermal relaxation, and (iii) double perovskite synthesis with high structural defects for multiferroic and spintronic applications. Mechanisms of apparent stabilization of intrinsically metastable products are discussed. Some remarks are given toward affordable material processing, irreplaceable by other nonconventional chemical processes. Conclusions are given at the end with a look into the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutkova E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, and Wieczorek-Ciurowa K, Chem Soc Rev 42 (18), (2013) 7571.

    Article  CAS  Google Scholar 

  2. Obst M, and König B, Eur J Org Chem 2018 (31), (2018) 4213.

    Article  CAS  Google Scholar 

  3. Pankrushina N A, Lomowsky O I, and Shakhtschneider T P, Chem Sustain Dev 27 (2019) 704.

    Article  CAS  Google Scholar 

  4. Senna M, ChemTexts 3 (2017) 1.

    Article  CAS  Google Scholar 

  5. Bak T, Nowotny J, Sucher N J, and Wachsman E, J Phys Chem C 115 (32), (2011) 15711.

    Article  CAS  Google Scholar 

  6. Sun C Q, Prog Solid State Chem 35 (1), (2007) 1.

    Article  Google Scholar 

  7. Senna M, Adv Powder Technol 13 (2002) 115.

    Article  CAS  Google Scholar 

  8. Shingu P H, and Ishihara K N, J Alloys Coompds 194 (1993) 319.

    Article  CAS  Google Scholar 

  9. Brazhkin V V, J Phys Condensed Matter 18 (42), (2006) 9643.

    Article  CAS  Google Scholar 

  10. Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G, Sci Adv 2 (2016) 1600225.

    Article  Google Scholar 

  11. Tsuji T, and Rey A D, Phys Rev E 62 (2000) 8141.

    Article  CAS  Google Scholar 

  12. Pazesh S, Grasjo J, Berggren J, and Alderborn G, Int J Pharm 528 (1–2), (2017) 215.

    Article  CAS  Google Scholar 

  13. Shpotyuk O, Bujňáková Z L, Baláž P, Shpotyuk Y, Demchenko P, and Balitska V, Adv Powder Technol 31 (8), (2020) 3610.

    Article  CAS  Google Scholar 

  14. Duda F P, Ciarbonetti A, Sánchez P J, and Huespe A E, Int J Plast 65 (2015) 269.

    Article  Google Scholar 

  15. Rajagopal K R, and Srinivasa A R, Z Angew Mathematik Phys 55 (5), (2004) 861.

    Article  Google Scholar 

  16. Cho S H, and Senna M, J Am Ceram Soc 103 (11), (2020) 6176.

    Article  CAS  Google Scholar 

  17. Sepelak V, Duvel A, Wilkening M, Becker K D, and Heitjans P, Chem Soc Rev 42 (18), (2013) 7507.

    Article  CAS  Google Scholar 

  18. Michalchuk A A, Boldyreva E V, Belenguer A M, Emmerling F, and Boldyrev V V, Front Chem 9 (2021) 685789.

    Article  CAS  Google Scholar 

  19. Monasson R, Phys Rev Lett 75 (15), (1995) 2847.

    Article  CAS  Google Scholar 

  20. Mitrofanov Y P, Kobelev N P, and Khonik V A, J Non-Cryst Solids 497 (2018) 48.

    Article  CAS  Google Scholar 

  21. Takacs L, Chem Soc Rev 42 (18), (2013) 7649.

    Article  CAS  Google Scholar 

  22. Tothova E, Duvel A, Witte R, Brand R A, Sarkar A, Kruk R, Senna M, Da Silva K L, Menzel D, Girman V, Hegedus M, Balaz M, Makreski P, Kubuki S, Kanuchova M, Valicek J, Hahn H, and Sepelak V, Front Chem 10 (2022) 846910.

    Article  CAS  Google Scholar 

  23. Wang Z, Li Z, Ng M, and Milner P J, Dalton Trans 49 (45), (2020) 16238.

    Article  CAS  Google Scholar 

  24. Ayoub G, Karadeniz B, Howarth A J, Farha O K, Đilović I, Germann L S, Dinnebier R E, Užarević K, and Friščić T, Chem Mater 31 (15), (2019) 5494.

    Article  CAS  Google Scholar 

  25. Friščić T, J Mater Chem 20 (36), (2010) 7599.

    Article  Google Scholar 

  26. Ariga K, Li J, Fei J, Ji Q, and Hill J P, Adv Mater 28 (6), (2016) 1251.

    Article  CAS  Google Scholar 

  27. Florea I, Florea R M, Baltatescu O, Soare V, Chelariu R, and Carcea I, J Optoelectorn Adv Mater 15 (2013) 761.

    Article  CAS  Google Scholar 

  28. Xiang H, Xing Y, Dai F-Z, Wang H, Su L, Miao L, Zhang G, Wang Y, Qi X, Yao L, Wang H, Zhao B, Li J, and Zhou Y, J Adv Ceram 10 (3), (2021) 385–441.

    Article  CAS  Google Scholar 

  29. Fu M, Ma X, Zhao K, Li X, and Su D, Iscience 24 (3), (2021) 102177.

    Article  CAS  Google Scholar 

  30. Saha-Dasgupta T, Mater Res Express 7 (1), (2020) 014003.

    Article  CAS  Google Scholar 

  31. Baláž M, Achimovičová M, Baláž P, Dutková E, Fabián M, Kováčová M, Lukáčová Bujňáková Z, and Tóthová E, Curr Opin Green Sustain Chem 24 (2020) 7–13.

    Article  Google Scholar 

  32. Rubin Pedrazzo A, Cecone C, Trotta F, and Zanetti M, ACS Sustain Chem Eng 9 (44), (2021) 14881.

    Article  CAS  Google Scholar 

  33. Brekalo I, Martinez V, Karadeniz B, Orešković P, Drapanauskaite D, Vriesema H, Stenekes R, Etter M, Dejanović I, Baltrusaitis J, and Užarević K, ACS Sustain Chem Eng 10 (20), (2022) 6743.

    Article  CAS  Google Scholar 

  34. Kuga S, and Wu M, Cellulose 26 (1), (2019) 215.

    Article  CAS  Google Scholar 

  35. Wang G W, Chem Soc Rev 42 (18), (2013) 7668.

    Article  CAS  Google Scholar 

  36. Varma R S, ACS Sustain Chem Eng 4 (11), (2016) 5866.

    Article  CAS  Google Scholar 

  37. Dong D, Zhang Y, Shan M, Yin T, Wang T, Wang J, and Gao W, J Clean Prod 348 (2022) 131351.

    Article  CAS  Google Scholar 

  38. Juaristi E, Tetrahedron 88 (2021) 132143.

    Article  CAS  Google Scholar 

  39. Schittny A, Huwyler J, and Puchkov M, Drug Deliv 27 (1), (2020) 110.

    Article  CAS  Google Scholar 

  40. Rumondor A C F, Dhareshwar S S, and Kesisoglou F, J Pharm Sci 105 (9), (2016) 2498.

    Article  CAS  Google Scholar 

  41. Baghel S, Cathcart H, and O’Reilly N J, J Pharm Sci 105 (9), (2016) 2527.

    Article  CAS  Google Scholar 

  42. Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, and Senna M, Int J Pharm 226 (2001) 81.

    Article  CAS  Google Scholar 

  43. Watanabe T, Ohno I, Wakiyama N, Kusai A, and Senna M, Int J Pharm 241 (2002) 103.

    Article  CAS  Google Scholar 

  44. Watanabe T, Wakiyama N, Kusai A, and Senna M, Ann Chim Sci Mater 29 (2004) 53.

    Article  CAS  Google Scholar 

  45. Loh Z H, Samanta A K, and Sia Heng P W, Asian J Pharm Sci 10 (4), (2015) 255.

    Article  Google Scholar 

  46. Narang A S, Desai D, and Badawy S, Pharm Res 29 (10), (2012) 2660.

    Article  CAS  Google Scholar 

  47. Watanabe T, Wakiyama N, Kusai A, and Senna M, Powder Technol 141 (3), (2004) 227.

    Article  CAS  Google Scholar 

  48. Watanabe T, Hasegawa S, Wakiyama N, Usui F, Kusai A, Isobe T, and Senna M, J Solid State Chem 164 (1), (2002) 27.

    Article  CAS  Google Scholar 

  49. Fang J X, Vainio U, Puff W, Wurschum R, Wang X L, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, and Gleiter H, Nano Lett 12 (1), (2012) 458.

    Article  CAS  Google Scholar 

  50. Fang J X, Vainio U, Puff W, Würschum R, Wang X L, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, and Gleiter H, Nano Lett 12 (9), (2012) 5058.

    Article  CAS  Google Scholar 

  51. Inoue A, Kong F L, Zhu S L, Shalaan E, and Al-Marzouki F M, Intermetallics 58 (2015) 20.

    Article  CAS  Google Scholar 

  52. Paleos C M, and Tsiourvas D, Curr Opin Colloid Interface Sci 6 (2001) 257.

    Article  CAS  Google Scholar 

  53. Turianicová E, Witte R, Da Silva K L, Zorkovská A, Senna M, Hahn H, Heitjans P, and Šepelák V, J Alloys Compd 707 (2017) 310.

    Article  Google Scholar 

  54. Tóthová E, Witte R, Hegedüs M, Senna M, Hahn H, Heitjans P, and Šepelák V, J Mater Sci 53 (19), (2018) 13530.

    Article  Google Scholar 

  55. Ando C, Yanagawa R, Chazono H, Kishi H, and Senna M, J Mater Res 19 (12), (2004) 3592.

    Article  CAS  Google Scholar 

  56. Yanagawa R, Senna M, Ando C, Chazono H, and Kishi H, J Am Ceram Soc 90 (3), (2007) 809.

    Article  CAS  Google Scholar 

  57. Ando C, Suzuki T, Mizuno Y, Kishi H, Nakayama S, and Senna M, J Mater Sci 43 (18), (2008) 6182.

    Article  CAS  Google Scholar 

  58. Baranowski L L, Zawadzki P, Lany S, Toberer E S, and Zakutayev A, Semicond Sci Technol 31 (12), (2016) 123004.

    Article  Google Scholar 

  59. Sahoo R C, Takeuchi Y, Ohtomo A, and Hossain Z, Phys Rev B 100 (21), (2019) 214436.

    Article  CAS  Google Scholar 

  60. Lin N, and Dufresne A, Eur Polym J 59 (2014) 302.

    Article  CAS  Google Scholar 

  61. Joyce P, Tan A, Whitby C P, and Prestidge C A, Langmuir 30 (10), (2014) 2779.

    Article  CAS  Google Scholar 

  62. Bokarev A N, and Plastun I L, Nanosyst Phys Chem Math 9 (3), (2018) 370.

    Article  CAS  Google Scholar 

  63. Grifoni E, Piccini G, Lercher J A, Glezakou V A, Rousseau R, and Parrinello M, Nat Commun 12 (1), (2021) 2630.

    Article  CAS  Google Scholar 

  64. Stanje B, Bottke P, Breuer S, Hanzu I, Heitjans P, and Wilkening M, Mater Res Express 5 (3), (2018) 035202.

    Article  Google Scholar 

  65. Bonadio A, Escanhoela C A, Sabino F P, Sombrio G, de Paula V G, Ferreira F F, Janotti A, Dalpian G M, and Souza J A, J Mater Chem A 9 (2), (2021) 1089.

    Article  CAS  Google Scholar 

  66. Rao G H, Liu G Y, Feng X M, Zhang Q, and Liang J K, Sci Technol Adv Mater 6 (7), (2005) 750–754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the coworkers appeared in the case studies introduced, among others, Dr. Tomoyuki Watanabe (Daiichi Sankyo Company, Limited), Dr. Vladimir Šepelák (Institute of Nanotechnology, Karlsruhe Institute of Technology) and Dr. Erika Tóthová (Institute of Geotechnics, SAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Senna.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senna, M. Stabilization of Metastable States Generated via an Affordable Mechanochemical Route for Functional Nanocomposites. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03075-0

Keywords

Navigation