Skip to main content

Advertisement

Log in

How can we make solids more reactive? Basics of mechanochemistry and recent new insights

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

By starting from the basics of solid-state chemical processes, the definition, concepts, particularities, and technological benefits of mechanochemistry are explained. Emphasis is laid on: (1) production and role of crystalline defects, (2) thermal and non-conventional diffusion, and (3) transfer of chemical units across the boundary of dissimilar solid. Since metal oxide powders are useful in many materials genres, examples of the mechanochemical reactions are based on complex oxides. Technological application of mechanochemical techniques to energy storage devices and pharmaceuticals is exemplified. Basic scientific background knowledge is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baláž P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutkova E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  2. Šepelák V, Duvel A, Wilkening M, Becker KD, Heitjans P (2013) Mechanochemical reactions and syntheses of oxides. Chem Soc Rev 42:7507–7520

    Article  Google Scholar 

  3. Blezard R (2004) The history of calcareous cements1–24, in Lea’s chemistry of cement and concrete. Elsevier, Amsterdam

    Google Scholar 

  4. Haynes WM (2015) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  5. Sands D (1994) Introduction to Crystallography. Dover Books, New York

    Google Scholar 

  6. Massa W (2004) Crystal Structure Determination. Springer, New York

    Book  Google Scholar 

  7. Gurney RW, Mott, NF (1938) The theory of photolysis of silver bromide and the photographic latent image. Proc Roy Soc A 164:151–167

    Article  CAS  Google Scholar 

  8. Jamnik J, Maier, J. (1997) Transport across and along interfaces in ceramics. Curr Opin Solid State Mater Sci 2:600–603

    Article  CAS  Google Scholar 

  9. Joshkin VA, Parker CA, Bedair SM, Muth JF, Shmagin IK, Kolbas RM, Piner EL, Molnar RJ (1999) Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy. J Appl Phys 86:281–288

    Article  CAS  Google Scholar 

  10. Bailey DJ, Flanagan WF (1967) The relationship between dislocation density and flow stress in materials deforming by a peierls-nabarro mechanism. Philos Phenomenol 15:43–49

    CAS  Google Scholar 

  11. Beeman M, Kohlsted, DL (1988) Dislocation density: stress relationships in natural and synthetic sodium chloride. Tecttophys 149:147–161

    Article  Google Scholar 

  12. Gonzalo-Juan I, Riedel R (2016) Ceramic synthesis from condensed phases. ChemTexts 2:6

    Article  Google Scholar 

  13. Verhoeven J (1975) Fundamentals of physical metallurgy. Wiley, Hoboken

    Google Scholar 

  14. Hilbert J, Nather C, Bensch W (2014) Influence of the synthesis parameters onto nucleation and crystallization of five new tin-sulfur containing compounds. Inorg Chem 53:5619–5630

    Article  CAS  Google Scholar 

  15. Merkle R, Maier J (2005) On the Tammann-rule. Z Anorg Allgem Chem 631:1163–1166.

    Article  CAS  Google Scholar 

  16. Chida S U, B S en na M (1990) A topochemical stury on the microsplaic deformation and preferred dissolution of pure silicon single crystal. Solid State Ionics 39:263–272

    Article  Google Scholar 

  17. Katayama K (1994) Preferential local dissolution of indented silicon {111} surface by aqueous solutions of HF with varying pH. Solid State Ionics 73:127–137

    Article  CAS  Google Scholar 

  18. Takacs L (2000) Self-sustaining metal–sulfur reactions induced by ball milling. J Mater Syn Process 8:181–188

    Article  CAS  Google Scholar 

  19. Shingu P, Ishihara KN (1993) Metastable melting phenomena and solid state amorphization (SSA) by mechanical alloying. J Alloys Compds 194:319–324

    Article  CAS  Google Scholar 

  20. Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Technol 67:100–104

    Article  Google Scholar 

  21. Delogu F (2010) Molecular dynamics of collisions between rough surfaces. Phys Rev B 82(20):205415

    Article  Google Scholar 

  22. Ostwald W (1919) Die chemische Literatur und die Organisation der Wissenschaft. Handbuch der allgemeinen Chemie 1 Akademische Verlagsgesellschaf, Leipzig

    Google Scholar 

  23. Hiratsuka K, Kajdas C (2013) Mechanochemistry as a key to understand the mechanisms of boundary lubrication, mechanolysis and gas evolution during friction. Proc Inst Mech Eng Part J J Eng Tribol 227:1191–1203.

    Article  CAS  Google Scholar 

  24. Suslick KS (2014) Mechanochemistry and sonochemistry: concluding remarks. Faraday Discuss 170:411–422

    Article  CAS  Google Scholar 

  25. Haehnel A, Sagara, Y, Simon YC, Wder C (2015) Mechanochemistry in polymers with supramolecular mechanophores. Topics Curr Chem 369:345–375

    Article  CAS  Google Scholar 

  26. Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. Cryst Eng Comm 11:388–403

    Article  CAS  Google Scholar 

  27. Baláž P, Choi WS, Fabián M, Godočíková E (2006) Mechanochemistry in the preparation of advanced materials. Acta Montan Slovaca 11:122–129

    Google Scholar 

  28. Gilman J (1996) Mechanochemistry. Science 274:65

    Article  CAS  Google Scholar 

  29. Green AE (1937) Stability of polyatomic molecules in degenerate electronic states. Proc R Soc Lond Ser A Math Phys Sci 161:220–235

    Article  Google Scholar 

  30. Butyagin PY (2006) From spontaneous dispersion to mechanical alloying. Colloid J 68 :397–403.

    Article  CAS  Google Scholar 

  31. Liao J, Senna M (1993) Mechanochemical dehydration and amorphization of hydroxides of Ca, Mg and Al on grinding with and without SiO2. Solid State Ionics 66:313–319

    Article  CAS  Google Scholar 

  32. Avvakumov E, Senna M, Kosova N (2001) Soft mechanochemical synthesis. Kluwer, Dordrecht

    Google Scholar 

  33. Karagedov GR, Avvakumov EG (2011) Low-temperature synthesis of ZrO2-8 mol.% Y2O3 nanopowder with high sinterability. Sci Sinter 43: 239–245.

    Article  CAS  Google Scholar 

  34. Senna M, Pavlic J, Rojac T, Malic B, Kosec M, Brennecka G (2014) Preparation of phase-pure K0.5Na0.5NbO3 fine powders by a solid-state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates. J Am Ceram Soc 97(2):413–419

    Article  CAS  Google Scholar 

  35. Senna M (2014) Foundation and application of solid-state processes at inorganic–organic particulate boundaries. Adv Powder Technol 25:114–121

    Article  CAS  Google Scholar 

  36. Senna M, Šepelák V, Shi J, Bauer B, Feldhoff A, Laporte V, Becker K-D (2012) Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE. J Solid State Chem 187:51–57

    Article  CAS  Google Scholar 

  37. Senna M, Turianicová E, Šepelák V, Bruns M, Scholz G, Lebedkin S, Kübel C, Wang D, Kaňuchová M, Kaus M, Hahn H (2014) Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride. Solid State Sci 30:36–43

    Article  CAS  Google Scholar 

  38. Ando C, Suzuki T, Mizuno Y, Kishi H, Nakayama S, Senna M (2008) Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route. J Mater Sci 43:6182–6192

    Article  CAS  Google Scholar 

  39. Zaghib K A, M., Bauthier M (1998) Electrochemistry of anodes in solid-state Li-ion polymer batteries. J Electrochem Soc 145:3135–3140

    Article  Google Scholar 

  40. Senna M, Fabián M, Kavan L, Zukalová M, Briančin J, Turianicová E, Bottke P, Wilkening M, Šepelák V (2016) Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route. J Solid State Electrochem 20(10):2673–2683

    Article  CAS  Google Scholar 

  41. Buschmann H, Dolle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H, Lotnyk A, Duppel V, Kienle L, Janek J (2011) Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys 13(43):19378–19392

    Article  CAS  Google Scholar 

  42. Kumar PJ, Nishimura K, Senna M, Düvel A, Heitjans P, Kawaguchi T, Sakamoto N, Wakiya N, Suzuki H (2016) A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Adv 6 (67):62656–62667

    Article  CAS  Google Scholar 

  43. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). Angew Chem Int Ed 46:7778–7781

    Article  CAS  Google Scholar 

  44. Watanabe T, Wakiyama N, Kusai A, Senna M (2004) Drug-carrier interaction in solid dispersions prepared by co-grinding and melt-quenching. Ann Chem Sci Mater 29:53–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks many scientists who supported his scientific activity including the coworkers of the case studies, appeared in the references. He also thanks the Alexander von Humboldt Foundation for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Senna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senna, M. How can we make solids more reactive? Basics of mechanochemistry and recent new insights. ChemTexts 3, 4 (2017). https://doi.org/10.1007/s40828-017-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-017-0041-0

Keywords

Navigation