Skip to main content
Log in

A Study of the Functionally Graded (Magnesium/Titanium Dioxide) Material's Mechanical and Tribological Characteristics Fabricated at Various Compaction Loading Rates

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

A Correction to this article was published on 15 November 2023

This article has been updated

Abstract

The current work examines the effect of compaction loading rate on mechanical and tribological behavior of Mg-TiO2 functionally graded material produced by powder-metallurgy. Using a blender designed and manufactured in this work, magnesium (Mg) and titanium oxide (TiO2) powders were mixed and graded using a linear function. The Mg/TiO2 mixtures were then hot compacted at various loading rates utilizing a universal testing device Instron, drop hammer and Split Hopkinson bar. The tribological behavior of the samples was examined through SEM analysis and wear tests and the mechanical properties, such as hardness, compressive strength and indentation resistance were measured using compression, indentation, and hardness tests. The results suggest that the compaction loading rate has significant effect on tribological and mechanical behaviour of the specimens. In general, the increase in loading rate improves the mechanical properties such as hardness, indentation resistance and ultimate strength and tribological parameters such as wear rate and friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Watanabe Y, Sato R, Kim I-S, Miura S, and Miura H, Mater. Trans. 46 (2005) 944.

    Article  CAS  Google Scholar 

  2. Watanabe Y, and Sato H, Nanocompos Unique Prop Appl Med Ind 133 (2011) 150.

    Google Scholar 

  3. Tsukamoto H, Komiya Y, Oshima N, Sato H, and Watanabe Y, Appl Mech Mater Trans Tech Publ 421 (2013) 272.

    Article  CAS  Google Scholar 

  4. Gasik M, Kawasaki A, and Ueda S, Mater Dev Process Bulk Amorph Mater Undercool Powder Metall 8 (2000) 258.

    CAS  Google Scholar 

  5. Kawasaki A, and Watanabe R, Ceram Int 23 (1997) 73.

    Article  CAS  Google Scholar 

  6. Watari F, Yokoyama A, Saso F, Uo M, and Kawasaki T, Compos Part B Eng 28 (1997) 5.

    Article  Google Scholar 

  7. Mahamood R M, Akinlabi E T, Shukla M, and Pityana S L, Functionally graded material: an overview (2012).

  8. Nemat-Alla M M, Ata M H, Bayoumi M R, and Khair-Eldeen W, Mater Sci Appl 2 (2011) 1708.

    Google Scholar 

  9. Roy S, Mater Today Chem 18 (2020) 100375.

    Article  Google Scholar 

  10. Canakci A, Varol T, Özkaya S, and Erdemir F, Univ J Mater Sci 2 (2014) 90.

    Google Scholar 

  11. Watari F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, and Kawasaki T, Compos Sci Technol 64 (2004) 893.

    Article  CAS  Google Scholar 

  12. Chu C, Xue X, Zhu J, and Yin Z, Mater Sci Eng A 429 (2006) 18.

    Article  Google Scholar 

  13. Takahashi H, Watari F, Nishimura F, and Nakamura H, J Jpn Soc Dent Mater Devices 11 (1992) 462.

    Google Scholar 

  14. Inaguma Y, Sato H, and Watanabe Y, Mater Sci Forum Trans Tech Publ (2010) 441.

  15. A. S. F. Testing, Materials, ASTM E384: Standard Test Method for Microindentation Hardness of Materials, ASTM West Conshohocken (2017).

  16. A. Standard, G99–05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA (2005).

  17. Yi M-J, Yin H-q, Wang J-z, Yuan X-j, and Qu X-h, Front Mater Sci China 3 (2009) 447.

    Article  Google Scholar 

  18. Faruqui A N, Manikandan P, Sato T, Mitsuno Y, and Hokamoto K, Metals Mater Int 18 (2012) 157.

    Article  CAS  Google Scholar 

  19. Rahmani K, Majzoobi G, Ebrahim-Zadeh G, and Kashfi M, Trans Nonferrous Metals Soc China 31 (2021) 371.

    Article  CAS  Google Scholar 

  20. Majzoobi G, Mohammadi M, and Rahmani K, J Mech Behav Biomed Mater 136 (2022) 105497.

    Article  CAS  Google Scholar 

  21. Sadooghi A, and Rahmani K, J Mech Sci Technol 35 (2021) 1121.

    Article  Google Scholar 

  22. Sadooghi A, Rahmani K, and Hashemi S, Strength Mater (2022) 1–15.

  23. Markov D, and Kelly D, Wear 239 (2000) 189.

    Article  CAS  Google Scholar 

  24. Archard J, J Appl Phys 24 (1953) 981.

    Article  Google Scholar 

  25. Jafari M, Enayati M, Abbasi M, and Karimzadeh F, Mater Des 31 (2010) 663.

    Article  CAS  Google Scholar 

  26. Anvari S, Karimzadeh F, and Enayati M, J Alloys Compd 562 (2013) 48.

    Article  CAS  Google Scholar 

  27. Majzoobi G, Rahmani K, Mohamadi M, Bakhtiari H, and Das R, Biotribology (2022) 100233.

  28. Jafari M, Abbasi M, Enayati M, and Karimzadeh F, Adv Powder Technol 23 (2012) 205.

    Article  CAS  Google Scholar 

  29. Dubey A, Jaiswal S, Haldar S, Roy P, and Lahiri D, Biomed Mater 16 (2020) 015017.

    Article  Google Scholar 

  30. Stalin B, Vidhya V, Ravichandran M, Kumar A N, and Sudha G, Noveishie Tekhnol 42 (2020) 497.

    Article  CAS  Google Scholar 

  31. Radhakrishnan G, Anirudh P, and Kumar S A, Mechanical Behavior of Nanoparticulate TiO2 Reinforced Magnesium Matrix Composite, IOP Conference Series: Materials Science and Engineering, IOP Publishing (2019) p 012006.

  32. Rahmani K, Sadooghi A, and Hashemi S J, Mater Res Express 7 (2020) 085012.

    Article  CAS  Google Scholar 

  33. Rahmani K, Majzoobi G, and Bakhtiari H, Mater Chem Phys 271 (2021) 124946.

    Article  CAS  Google Scholar 

  34. Rahmani K, Nouri A, Wheatley G, Malekmohammadi H, Bakhtiari H, and Yazdi V, J Mater Res Technol 14 (2021) 2107.

    Article  CAS  Google Scholar 

  35. Rahmani K, Sadooghi A, and Nokhberoosta M, J Mater Res Technol 9 (2020) 1104.

    Article  CAS  Google Scholar 

  36. Rahmani K, and Majzoobi G-H, Modares Mech Eng 18 (2018) 361.

    Google Scholar 

  37. Majzoobi G, Rahmani K, and Kashfi M, J Stress Anal 4 (2020) 19.

    Google Scholar 

Download references

Acknowledgements

The authors of this work truly thank Iran National Science Foundation (INSF), Project Title: “Fabrication and physical and mechanical characterization of Functionally Graded Materials (FGM's) produced by Dynamic Compaction Method by Split Hopkinson Bar” (Code number: 97017026), for their financial support without which the work was not possible to be accomplished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised. In this article the author’s name Gholamhossein Majzoobi was incorrectly written as Gholamhossein MajSzoobi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, K., Majzoobi, G. A Study of the Functionally Graded (Magnesium/Titanium Dioxide) Material's Mechanical and Tribological Characteristics Fabricated at Various Compaction Loading Rates. Trans Indian Inst Met 76, 3175–3185 (2023). https://doi.org/10.1007/s12666-023-03072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03072-3

Keywords

Navigation