Skip to main content

Advertisement

Log in

Influence of Merge CoDoping of Bi/Ni ions on the Structural, Optical, and Colossal Dielectric Properties of TCO Anatase TiO2 Nanoparticles: Impact of Post-annealing in Hydrogen Gas Atmosphere

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A hydrothermal precipitation technique was used to synthesize TiO2 oxide nanoparticles doped with Bi/Ni ions. X-ray diffraction, diffuse reflection spectroscopy, and ac-dielectric measurements were used to investigate the mechanical, optical, and dielectric properties of the synthesized NPs powder. Using Bi/Ni ionic codoping, TiO2 NCs were constructed as core/shell nanostructures. A key contribution of this work was the creation of colossal permittivity (CP). Thus, the dielectric measurements show CP of magnitude ~ 5 × 106 at room temperature and frequency of 1 kHz that was reduced to 2.7 × 105 by the hydrogenation of the sample, which are much more than that of pristine TiO2. Within the framework of the core/shell model and doping mechanisms, CP was explained in detail. Additionally, hydrogenation was explained as a reduction in CP by increasing itinerant electron concentrations as a result of the strong catalyst power of dopant Ni2+ ions dissociating adsorbed hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Tuichaia W, Danwittayakulb S, Srepusharawoota P, Thongbaia P, and Maensiri S, Giant dielectric permittivity and electronic structure in (A3+, Nb5+) codoped TiO2 (A = Al, Ga and In). Cer Int. 43 (2017) S265–S269.

    Article  Google Scholar 

  2. Fana J, Lengb S, Caoa Zh, Hea W, Gaoa Y, Liua J, and Li G, Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics. Cer. Int. 45 (2019) 1001–1010.

    Article  Google Scholar 

  3. Yanga C, Weia X, and Hao J, Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2. Cer. Int. 44 (2018) 12395–12400.

    Article  Google Scholar 

  4. Balhamri A, Deraoui A, Bahou Y, Rattal M, Mouhsen A, Harmouchi M, and Oualim E M, Surface and optical properties of zinc oxide doped with fluor synthesized by magnetron sputtering: applications in transparent conductive oxides (TCO). Int. J. Thin. Fil. Sci. Tec. 4 (3), (2015) 205–210. https://doi.org/10.12785/ijtfst/040308

    Article  Google Scholar 

  5. Thongyonga N, Tuichaia W, Chanlekb N, and Thongbai P, Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Cer. Int. 43 (2017) 15466–15471.

    Article  Google Scholar 

  6. Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S, and Thongbai P, Giant dielectric permittivity and electronic structure in (Al + Sb)co-doped TiO2 ceramics. Microelectronic Engineering 146 (2015) 32–37.

    Article  CAS  Google Scholar 

  7. Masuda Y, and Kato K, Synthesis and phase transformation of TiO2 nan0-crystals in aqueous solution. J. Cer. Soc. Japan 117 (3), (2009) 373–376.

    Article  CAS  Google Scholar 

  8. Gupta S M, and Tripathi M, A review of TiO2 nanoparticles. Chinese Sci. Bulletin 56 (2011) 1639–1657. https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  9. Hu W, Liu Y, Withers R L, Frankcombe T J, Norén L, Snashall A, Kitchin M, Smith P, Gong B, Chen H, Schiemer J, Brink F, and Wong-Leung J, Nat. Mater. 12 (2013) 821–826.

    Article  CAS  Google Scholar 

  10. Elfimov I S, Yunoki S, and Sawatzky G A, Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials. Phys. Rev. Lett. 89 (2002) 216403

    Article  CAS  Google Scholar 

  11. Ryan Lance “Optical analysis of Titania: Band gaps of Brookite, Rutile and Anatase”, A B.Sc.thesis, Oregon State University, May 5 2018.

  12. Lin Y H, Li M, Nan C W, Li J, Wu J, and He J, Grain and grain boundary effects in high- permittivity dielectric NiO-based ceramics. Appl. Phys. Lett. 89 (2006) 032907

    Article  Google Scholar 

  13. Shannon R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32 (1976) 751–767.

    Article  Google Scholar 

  14. C. Kittel, Introduction to solid state physics,7th ed.,1996, P.614.

  15. Liqiang Jing, Xiaojun Sun, Baifu Xin, Baiqi Wang, Weimin Cai, and Honggang Fu, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177 (2004) 3375–3382.

    Article  Google Scholar 

  16. Pozzo M, and Alfe D, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int. J. Hydrogen Energy 34 (2009) 1922–1930.

    Article  CAS  Google Scholar 

  17. Bououdina M, and Dakhel A A, Creation of RT-FM in CdO nanocrystalline powder by codoping with Cu and Gd: Effect of annealing in hydrogen atmosphere. J. Alloys and Compds 601 (2014) 162–166.

    Article  CAS  Google Scholar 

  18. Dong W, Hu W, Berlie A, Lau K, Chen H, Withers R L, and Liu Y, Colossal dielectric behavior of Ga+Nb Co-doped rutile TiO2. ACS Appl. Mater. Interfaces 7 (45), (2015) 25321–25325.

    Article  CAS  Google Scholar 

  19. Wang X W, Zhang B H, Sun L Y, Qiao W N, Hao Y D, Hu Y C, and Wang X E, Colossal dielectric properties in (Ta0.5Al0.5)xTi1−xO2 ceramics. J. Alloy. Compd. 745 (2018) 856–862.

    Article  CAS  Google Scholar 

  20. Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S, and Thongbai P, Giant dielectric permittivity and electronic structure in (Al + Sb) co-doped TiO2 ceramics. Microelectron. Eng. 146 (2015) 32–37.

    Article  CAS  Google Scholar 

  21. Panigrahi M R, and Mallick, Analysis of internal strain due to the substitution of calcium on BaTiO3 ceramic. Orissa J. Phys. 18 (1), (2011) 33–44.

    Google Scholar 

  22. Reddy P A K, Srinivas B, Kala P, Kumari V D, and Subrahmanyam M, Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater. Res. Bulletin 46 (2011) 1766–1771. https://doi.org/10.1016/j.materresbull.2011.08.006

    Article  CAS  Google Scholar 

  23. Nematollahia Reza, Ghotbia Cyrus, Khorasheha Farhad, and Larimi Afsanehsadat, Ni-Bi co-doped TiO2 as highly visible light response nano-photocatalyst for CO2 photo-reduction in a batch photo-reactor. J CO Utilization 41 (2020) 101289

    Article  Google Scholar 

  24. Pankove J I, Optical Processes in Semiconductors, Dover, NY (1975), p 36.

    Google Scholar 

  25. Bonkerud J, Zimmermann C, Weiser P M, et al., On the permittivity of titanium dioxide. Sci Rep 11 (2021) 12443. https://doi.org/10.1038/s41598-021-92021-5

    Article  CAS  Google Scholar 

  26. Dakhel A A, Effect of coalesce doping of Li and Bi on structural, optical and dielectric properties of TCO anatase TiO2 nanoparticles. Eur. Phys. J. Appl. Phys. 97 (2022) 44. https://doi.org/10.1051/epjap/2022220043

    Article  CAS  Google Scholar 

  27. Jana P K, Sarkar S, and Chaudhuri B K, Low loss giant dielectric and electrical transport behavior of KxTiyNi1−xyO system. Appl. Phys. Lett. 88 (2006) 182901

    Article  Google Scholar 

  28. Yang W Z, Fu M S, Liu X Q, Zhu H Y, and Chen X M, Giant dielectric response and mixed-valent structure in the layered-ordered double perovskite ceramics. Ceram. Int. 37 (2011) 2747–2753.

    Article  CAS  Google Scholar 

  29. Joseph D P, Saravanan M, Muthuraaman B, Renugambal P, Sambasivam S, Raja S P, Maruthamuthu P, and Venkateswaran C, Spray deposition and characterisdation of nanostructures Li doped NiO thin films for application in dye-sensitized solar cells. Nanotechnology 19 (2008) 485707

    Article  Google Scholar 

  30. Elliott S R, A.c Conduction in Amorphous Chalcogenide and Pnictide Semiconductors. Advances in Phys. 36 (1987) 135–217.

    Article  CAS  Google Scholar 

  31. Pilet J C, and Leraon A, Un nouveau formalisme pour la permittivite dielectrique dans le cas d’une distribution gaussienne des temps de relaxation. Advances in Molecular Relaxation and Interaction Processes 14 (1979) 235.

    Article  CAS  Google Scholar 

  32. Hill R M, and Jonscher A K, DC and AC conductivity in hopping electronic systems. J. Non-Cryst. Solids 32 (1979) 53–69.

    Article  CAS  Google Scholar 

  33. Yakuphanoglua F, Aydogdua Y, Schatzschneiderb U, and Rentschler E, Electrical conductivity, dielectric permittivity and thermal properties of the compound aqua[bis(2-dimethylaminomethyl-4-NIT-phenolato)] copper(II) including NaCl impurity. Physica B 334 (2003) 443–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashoor.

Ethics declarations

Conflict of interest

I wish to confirm that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashoor, H., Dakhel, A.A. & Jaafar, A. Influence of Merge CoDoping of Bi/Ni ions on the Structural, Optical, and Colossal Dielectric Properties of TCO Anatase TiO2 Nanoparticles: Impact of Post-annealing in Hydrogen Gas Atmosphere. Trans Indian Inst Met 76, 3059–3064 (2023). https://doi.org/10.1007/s12666-023-02900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02900-w

Keywords

Navigation