Skip to main content
Log in

Unravelling the role of lithium and nickel doping on the defect structure and phase transition of anatase TiO2 nanoparticles

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles doped either with Li or Ni have been synthesized via hydrolysis in variable concentrations. Microstructural analysis confirms the high crystallinity of the doped nanoparticles with sizes around 7 nm, while compositional analysis shows low doping below 2% at. Despite the low concentration of dopants, variations in the Raman and Photoluminescence signals were observed in the doped nanoparticles, mainly due to non-stoichiometry and oxygen deficiency promoted by Li or Ni doping. Doping effects associated with Li and Ni were observed by photoelectron spectroscopy and first principle calculations, which associate the appearance of states in the valence band region to oxygen deficiency and Li or Ni doping and lower n-type character induced by Ni doping. Finally, changes in the thermally induced anatase-to-rutile transition (ART) have been also observed in the doped samples, leading to a dopant-promoted faster ART which occurs at lower temperature boosted due to the dopant effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Noman MT, Ashraf MA, Ali A (2019) Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut Res 26:3262–3291. https://doi.org/10.1007/s11356-018-3884-z

    Article  CAS  Google Scholar 

  2. Zhang Y, Jiang Z, Huang J et al (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510. https://doi.org/10.1039/c5ra11298b

    Article  CAS  Google Scholar 

  3. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  4. Madian M, Eychmüller A, Giebeler L (2018) Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries 4:7. https://doi.org/10.3390/BATTERIES4010007

    Article  Google Scholar 

  5. Liang S, Wang X, Cheng YJ et al (2022) Anatase titanium dioxide as rechargeable ion battery electrode-a chronological review. Energy Storage Mater 45:201–264. https://doi.org/10.1016/J.ENSM.2021.11.023

    Article  Google Scholar 

  6. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386. https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  7. Ahmed SA (2017) Ferromagnetism in Cr-, Fe-, and Ni-doped TiO2 samples. J Magn Magn Mater 442:152–157. https://doi.org/10.1016/J.JMMM.2017.06.108

    Article  CAS  Google Scholar 

  8. Komaraiah D, Radha E, Kalarikkal N et al (2019) Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int 45:25060–25068. https://doi.org/10.1016/J.CERAMINT.2019.03.170

    Article  CAS  Google Scholar 

  9. Vásquez GC, Peche-Herrero MA, Maestre D et al (2014) Influence of Fe and Al doping on the stabilization of the anatase phase in TiO2 nanoparticles. J Mater Chem C 2:10377–10385. https://doi.org/10.1039/c4tc02099e

    Article  CAS  Google Scholar 

  10. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  11. Pirsaheb M, Shahmoradi B, Khosravi T et al (2016) Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desalin Water Treat 57:9881–9888. https://doi.org/10.1080/19443994.2015.1033764

    Article  CAS  Google Scholar 

  12. Hyun Kim D, Sub Lee K, Kim Y-S et al (2006) Photocatalytic activity of Ni 8 wt%-Doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J Am Ceram Soc 89:515–518. https://doi.org/10.1111/j.1551-2916.2005.00782.x

    Article  CAS  Google Scholar 

  13. Elahifard MR, Ahmadvand S, Mirzanejad A (2018) Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: simulation and experiment. Mater Sci Semicond Process 84:10–16. https://doi.org/10.1016/j.mssp.2018.05.001

    Article  CAS  Google Scholar 

  14. Chen J, Lu GH, Cao H et al (2008) Ferromagnetic mechanism in Ni-doped anatase TiO2. Appl Phys Lett 93:172504. https://doi.org/10.1063/1.3002291

    Article  CAS  Google Scholar 

  15. Balakrishnan M, John R (2021) Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar cell. J Mater Sci Mater Electron 32:5295–5308. https://doi.org/10.1007/S10854-020-05100-0/TABLES/5

    Article  CAS  Google Scholar 

  16. Liang Y, Su K, Cao L, Li Z (2019) Lithium doped TiO2 as catalysts for the transesterification of bisphenol-A with dimethyl carbonate. Mol Catal 465:16–23. https://doi.org/10.1016/j.mcat.2018.12.022

    Article  CAS  Google Scholar 

  17. Ravishankar TN, Nagaraju G, Dupont J (2016) Photocatalytic activity of Li-doped TiO2 nanoparticles: synthesis via ionic liquid-assisted hydrothermal route. Mater Res Bull 78:103–111. https://doi.org/10.1016/j.materresbull.2016.02.017

    Article  CAS  Google Scholar 

  18. Lan C, Luo J, Lan H et al (2018) Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2S3 thin film solar cells. Materials (Basel) 11:355. https://doi.org/10.3390/ma11030355

    Article  CAS  Google Scholar 

  19. Wang YQ, Gu L, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879. https://doi.org/10.1021/ja301266w

    Article  CAS  Google Scholar 

  20. Vázquez-López A, García-Carrión M, Hall E et al (2021) Hybrid materials and nanoparticles for hybrid silicon solar cells and Li-ion batteries. J Energy Power Technol 3:1–1. https://doi.org/10.21926/JEPT.2102020

    Article  Google Scholar 

  21. Vázquez-López A, Maestre D, Ramírez-Castellanos J et al (2020) Influence of doping and controlled Sn charge state on the properties and performance of SnO2 nanoparticles as anodes in Li-ion batteries. J Phys Chem C 124:18490–18501. https://doi.org/10.1021/acs.jpcc.0c06318

    Article  CAS  Google Scholar 

  22. Nyamukamba P, Okoh O, Mungondori H, et al (2018) Synthetic methods for titanium dioxide nanoparticles: a review. In: Yang D (ed) Titanium dioxide - material for a sustainable environment, IntechOpen. https://doi.org/10.5772/intechopen.70290

  23. Zangrando M, Finazzi M, Paolucci G et al (2001) BACH, the beamline for advanced dichroic and scattering experiments at ELETTRA. Rev Sci Instrum 72:1313–1319. https://doi.org/10.1063/1.1334626

    Article  CAS  Google Scholar 

  24. Zangrando M, Zacchigria M, Finazzi M et al (2004) Polarized high-brilliance and high-resolution soft X-ray source at ELETTRA: the performance of beamline BACH. Rev Sci Instrum 75:31–36. https://doi.org/10.1063/1.1634355

    Article  CAS  Google Scholar 

  25. Oku M, Wagatsuma K, Kohiki S (1999) Ti 2p and Ti 3p X-ray photoelectron spectra for TiO2, SrTiO3 and BaTiO3. Phys Chem Chem Phys 1:5327–5331. https://doi.org/10.1039/a907161j

    Article  CAS  Google Scholar 

  26. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324. https://doi.org/10.1002/jrs.1250070606

    Article  Google Scholar 

  27. Zhang WF, He YL, Zhang MS et al (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916. https://doi.org/10.1088/0022-3727/33/8/305

    Article  CAS  Google Scholar 

  28. Vázquez-López A, Yaseen A, Maestre D et al (2020) Improved silicon surface passivation by hybrid composites formed by PEDOT: PSS with anatase TiO2 nanoparticles. Mater Lett 271:127802. https://doi.org/10.1016/j.matlet.2020.127802

    Article  CAS  Google Scholar 

  29. Xu Z, Wang S, Ma C et al (2019) Effect of nickel doping on phase transformation of TiO2 nanotube arrays. Phys status solidi 216:1800836. https://doi.org/10.1002/pssa.201800836

    Article  CAS  Google Scholar 

  30. Šćepanović M, Aškrabić S, Berec V, Golubović A, Dohčević-Mitrović Z, Kremenović A, Popović ZV (2009) Characterization of La-doped TiO2 nanopowders by Raman spectroscopy. Acta Phys Pol A 115:771–774

    Article  Google Scholar 

  31. Choudhury B, Choudhury A (2013) Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr Appl Phys 13:1025–1031. https://doi.org/10.1016/j.cap.2013.02.007

    Article  Google Scholar 

  32. Kumaravel V, Rhatigan S, Mathew S et al (2020) Mo doped TiO2: impact on oxygen vacancies, anatase phase stability and photocatalytic activity. J Phys Mater 3:25008. https://doi.org/10.1088/2515-7639/ab749c

    Article  CAS  Google Scholar 

  33. Choudhury B, Choudhury A (2012) Luminescence characteristics of cobalt doped TiO2 nanoparticles. J Lumin 132:178–184. https://doi.org/10.1016/j.jlumin.2011.08.020

    Article  CAS  Google Scholar 

  34. Zhang J, Chen X, Shen Y et al (2011) Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys Chem Chem Phys 13:13096–13105. https://doi.org/10.1039/c0cp02924f

    Article  CAS  Google Scholar 

  35. Jiang H, Song H, Zhou Z et al (2007) The roles of Li+ and F- ions in Li-F- codoped TiO2 system. J Phys Chem Solids 68:1830–1835. https://doi.org/10.1016/j.jpcs.2007.01.027

    Article  CAS  Google Scholar 

  36. Zhao YF, Li C, Lu S et al (2016) Effects of oxygen vacancy on 3d transition-metal doped anatase TiO2: first principles calculations. Chem Phys Lett 647:36–41. https://doi.org/10.1016/j.cplett.2016.01.040

    Article  CAS  Google Scholar 

  37. NIST standard reference database (2000) NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD. https://doi.org/10.18434/T4T88K

  38. Tian J, Gao H, Kong H et al (2013) Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol-gel process. Nanoscale Res Lett 8:1–11. https://doi.org/10.1186/1556-276X-8-533

    Article  CAS  Google Scholar 

  39. Kallel W, Bouattour S, Ferreira LFV, Botelho do Rego AM, (2009) Synthesis, XPS and luminescence (investigations) of Li+ and/or Y3+ doped nanosized titanium oxide. Mater Chem Phys 114:304–308. https://doi.org/10.1016/j.matchemphys.2008.09.032

    Article  CAS  Google Scholar 

  40. Kumar Vishwakarma A, Majid SS, Yadava L (2019) XANES analysis and structural properties of CdS-doped TiO2. Vacuum 165:239–245. https://doi.org/10.1016/j.vacuum.2019.04.040

    Article  CAS  Google Scholar 

  41. Crocombette JP, Jollet F (1994) Ti 2p X-ray absorption in titanium dioxides (TiO2): the influence of the cation site environment. J Phys Condens Matter 6(49):10811. https://doi.org/10.1088/0953-8984/6/49/022

    Article  CAS  Google Scholar 

  42. de Groot FMF, Figueiredo MO, Basto MJ et al (1992) 2 p X-ray absorption of titanium in minerals. Phys Chem Miner 19:140–147. https://doi.org/10.1007/BF00202101

    Article  Google Scholar 

  43. Thomas AG, Flavell WR, Mallick AK et al (2007) Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys Rev B Condens Matter Mater Phys 75:1–12. https://doi.org/10.1103/PhysRevB.75.035105

    Article  CAS  Google Scholar 

  44. Kapilashrami M, Zhang Y, Liu YS et al (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707. https://doi.org/10.1021/cr5000893

    Article  CAS  Google Scholar 

  45. Ruus R, Kikas A, Saar A et al (1997) Ti 2p and O 1s X-ray absorption of TiO2 polymorphs. Solid State Commun 104:199–203. https://doi.org/10.1016/S0038-1098(97)00300-1

    Article  CAS  Google Scholar 

  46. Chen SC, Sung KY, Tzeng WY et al (2013) Microstructure and magnetic properties of oxidized titanium nitride thin films in situ grown by pulsed laser deposition. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/46/7/075002

    Article  Google Scholar 

  47. Wang H, Ralston CY, Patil DS et al (2000) Nickel L-edge soft X-ray spectroscopy of nickel–iron hydrogenases and model compounds evidence for high-spin nickel(II) in the active enzyme. J Am Chem Soc 122:10544–10552. https://doi.org/10.1021/ja000945g

    Article  CAS  Google Scholar 

  48. Gu W, Wang H, Wang K (2014) Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S2C2(CF3)2]2n series (n = − 2, − 1, 0): direct probe of nickel fractional oxidation state changes. J Chem Soc Dalt Trans 43:6406–6413. https://doi.org/10.1039/c4dt00308j

    Article  CAS  Google Scholar 

  49. Lin F, Nordlund D, Weng TC et al (2013) Hole doping in al-containing nickel oxide materials to improve electrochromic performance. ACS Appl Mater Interfaces 5:301–309. https://doi.org/10.1021/am302097b

    Article  CAS  Google Scholar 

  50. Bapna K, Phase DM, Choudhary RJ (2011) Study of valence band structure of Fe doped anatase TiO2 thin films. J Appl Phys 110:043910. https://doi.org/10.1063/1.3624775

    Article  CAS  Google Scholar 

  51. Feng N, Liu F, Huang M et al (2016) Unravelling the efficient photocatalytic activity of boron-induced Ti3+species in the surface layer of TiO2. Sci Rep 6:34765. https://doi.org/10.1038/srep34765

    Article  CAS  Google Scholar 

  52. Weidler N, Schuch J, Knaus F et al (2017) X-ray photoelectron spectroscopic investigation of plasma-enhanced chemical vapor deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J Phys Chem C 121:6455–6463. https://doi.org/10.1021/acs.jpcc.6b12652

    Article  CAS  Google Scholar 

  53. Vásquez GC, Maestre D, Cremades A et al (2018) Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-26728-3

    Article  CAS  Google Scholar 

  54. Selli D, Fazio G, Di Valentin C (2017) Using density functional theory to model realistic TiO2 nanoparticles, their photoactivation and interaction with water. Catal 7:357. https://doi.org/10.3390/CATAL7120357

    Article  Google Scholar 

  55. Zhang YH, Reller A (2002) Phase transformation and grain growth of doped nanosized titania. Mater Sci Eng C 19:323–326. https://doi.org/10.1016/S0928-4931(01)00409-X

    Article  Google Scholar 

  56. Nair J, Nair P, Mizukami F et al (1999) Microstructure and phase transformation behavior of doped nanostructured titania. Mater Res Bull 34:1275–1290. https://doi.org/10.1016/S0025-5408(99)00113-0

    Article  CAS  Google Scholar 

  57. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762

    Article  CAS  Google Scholar 

  58. Kim JY, Jung HS, No JH et al (2006) Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films. Journal of electroceramics. Springer, Berlin, pp 447–451

    Google Scholar 

Download references

Acknowledgement

We acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. This work was supported by MINECO/FEDER/M-ERA.Net Cofound projects: RTI2018-097195-B-I00 and PCIN-2017-106. I.P. and S.N. gratefully acknowledge financial support from EUROFEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Vázquez-López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-López, A., Maestre, D., Martínez-Casado, R. et al. Unravelling the role of lithium and nickel doping on the defect structure and phase transition of anatase TiO2 nanoparticles. J Mater Sci 57, 7191–7207 (2022). https://doi.org/10.1007/s10853-022-07122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07122-x

Navigation