Skip to main content
Log in

Impact of hydrogenation on the structural, optical and dielectric properties of (Sb + Dy) co-doped TiO2 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 oxide nanoparticles co-doped with Sb/Dy ions were synthesized by a hydrothermal precipitation method. Some amount of the synthesized co-doped sample was hydrogenated at ~550°C for 30 min. The samples were characterized by traditional methods: structural investigation by X-rays, an optical investigation by spectral diffuse reflectance and AC dielectric measurements. It was noticed that 3%-Sb/Dy co-doping induces growth of mixed (Anatase + rutile) TiO2 phases. The different styles of doping of Sb5+ and Dy3+ ions into TiO2 nanocrystallites can be utilized to produce core/shell construction for the creation of colossal permittivity (CP). Thus, the dielectric permittivity for Sb/Dy co-doped TiO2 was found to be of order ~103 at 1 kHz. The hydrogenation was found to reduce the CP by influencing the core/shell constructions as well as by the creation of a high density of itinerant electrons, which could be estimated by the optical measurements. This result is important from point of view of studying the influence of hydrogenation on the dielectric properties of nano-sized transparent conducting oxides. The created CP was explained, in the present work, within the framework of the core/shell model and doping mechanisms. Such important results will be useful for future work on using hydrogenation to support/reduce CP depending on the types of dopant ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tuichaia W, Danwittayakulb S, Srepusharawoota P, Thongbaia P and Maensiri S 2017 Ceram. Int. 43 S265

    Article  Google Scholar 

  2. Fana J, Lengb S, Caoa Zh, Hea W, Gaoa Y, Liua J et al 2019 Ceram. Int. 45 1001

    Article  Google Scholar 

  3. Yanga C, Weia X and Hao J 2018 Ceram. Int. 44 12395

    Article  Google Scholar 

  4. Balhamri A, Deraoui A, Bahou Y, Rattal M, Mouhsen Az, Harmouchi M et al 2015 Int. J. Thin. Fil. Sci. Tec. 4 205

    Google Scholar 

  5. Thongyonga N, Tuichaia W, Chanlekb N and Thongbai P 2017 Ceram. Int. 43 15466

    Article  Google Scholar 

  6. Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S and Thongbai P 2015 Microelectron Eng. 146 32

    Article  CAS  Google Scholar 

  7. Masuda Y and Kato K 2009 J. Ceram. Soc. Japan 117 373

    Article  CAS  Google Scholar 

  8. Gupta S M and Tripathi M 2011 Chinese Sci. Bull. 56 1639

    Article  CAS  Google Scholar 

  9. Hu W, Liu Y, Withers R L, Frankcombe T J, Norén L, Snashall A et al 2013 Nat. Mater. 12 821

    Article  CAS  Google Scholar 

  10. Elfimov I S, Yunoki S and Sawatzky G A 2002 Phys. Rev. Lett. 89 216403

    Article  CAS  Google Scholar 

  11. Lance R 2018 Optical analysis of titania: band gaps of brookite, rutile and anatase (Oregon State University)

    Google Scholar 

  12. Lin Y H, Li M, Nan C W, Li J, Wu J and He J 2006 Appl. Phys. Lett. 89 032907

    Article  Google Scholar 

  13. Nachaithong T, Tuichai W, Moontragoon P, Chanlek N and Thongbai P 2018 Ceram. Int. 44 S186

    Article  CAS  Google Scholar 

  14. Min Wanga, Shouli Bai, Aifan Chen, Yandong Duan, Qiuping Liu, Dianqing Li et al 2012 Electrochim. Acta 77 54

    Article  Google Scholar 

  15. Bharathi Bernadsha S, Fennyl Britto J, Anto Feradrick Samson V, Madhavan J, Victor Antony Raj M and Mahendiran M 2022 Mater. Today Proc. 50 2683

    Article  CAS  Google Scholar 

  16. Shannon R D 1976 Acta Crystallogr. A32 751

    Article  CAS  Google Scholar 

  17. Jing Liqiang, Sun Xiaojun, Xin Baifu, Wang Baiqi, Cai Weimin and Honggang Fu 2004 J. Solid State Chem. 177 3375

    Article  CAS  Google Scholar 

  18. Regonini D, Adamaki V, Bowen C R, Pennock S R, Taylor J and Dent A C E 2012 Solid State Ion 229 38

    Article  CAS  Google Scholar 

  19. Pullar R C, Penn S J, Wang X, Reaney I M and Alford N M 2009 J. Eur. Ceram. Soc. 29 419

    Article  CAS  Google Scholar 

  20. Wang X W, Zhang B H, Sun L Y, Qiao W N, Hao Y D, Hu Y C et al 2018 J. Alloys Compd. 745 856

    Article  CAS  Google Scholar 

  21. Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S and Thongbai P 2015 Microelectron. Eng. 146 32

    Article  CAS  Google Scholar 

  22. Diebold U 2003 Surf. Sci. Rep. 48 53

    Article  CAS  Google Scholar 

  23. De Almeida-Didry S, Samir M, Autret-Lambert C, Martin Nomel M, Lucas A and Gervais F 2020 Sol. State Sci. 109 106431

    Article  Google Scholar 

  24. Anyaegbunam F N C and Augustine C 2018 Dig. J. Nanomater. 13 847

    Google Scholar 

  25. Pankove J I 1975 Optical processes in semiconductors (New York: Dover Publications Inc.)

    Google Scholar 

  26. Wypych A, Bobowska I and Tracz M 2014 J. Nanomater. Article ID124814

  27. Spurr R A and Myers H 1957 Anal. Chem. 29 760

    Article  CAS  Google Scholar 

  28. Wang M, Bai S I, Chen A, Duan Y, Liu Q, Li D et al 2012 Electrochim. Acta 77 54

    Article  CAS  Google Scholar 

  29. Panigrahi M R and Mallick B 2011 Orissa. J. Phys. 18 33

    Google Scholar 

  30. Morales A E, Mora E S and Pal U 2007 Rev. Mex. de Fis. S53 18

    Google Scholar 

  31. Bououdina M and Dakhel A A 2014 J. Alloys Compd. 601 162

    Article  CAS  Google Scholar 

  32. Pozzo M and Alfe D 2009 Int. J. Hydrogen Energy 34 1922

    Article  CAS  Google Scholar 

  33. Dakhel A A 2020 J. Electroceram. 45 22

    Article  CAS  Google Scholar 

  34. Fernández-Torre D, Carrasco J, Ganduglia-Pirovano M V and Pérez R 2014 J. Chem. Phys. 141 014703

    Article  Google Scholar 

  35. Qiao Z, Agashe C and Mergel D 2006 Thin Solid Films 496 520

    Article  CAS  Google Scholar 

  36. Mergel D and Qiao Z 2002 J. Phys. D: Appl. Phys. 35 794

    Article  CAS  Google Scholar 

  37. Ferro R and Rodriguez J A 2000 Sol Energy Sol Cells 64 363

    Article  CAS  Google Scholar 

  38. Dakhel A A and Ali-Mohamed A Y 2007 J. Sol-Gel Sci. Technol. 44 241

    Article  CAS  Google Scholar 

  39. Baker-Finch S C, McIntosh K R, Yan D and Fong K C 2014 J. Appl. Phys. 116 063106

    Article  Google Scholar 

  40. Hill R M and Jonscher A K 1979 J. Non-Cryst. Solids 32 53

    Article  CAS  Google Scholar 

  41. Yang W Z, Fu M S, Liu X Q, Zhu H Y and Chen X M 2011 Ceram. Int. 37 2747

    Article  CAS  Google Scholar 

  42. Yakuphanoglu F, Aydogdua Y, Schatzschneiderb U and Rentschler E 2003 Physica B 334 443

    Article  CAS  Google Scholar 

  43. Joseph D P, Saravanan M, Muthuraaman B, Renugambal P, Sambasivam S, Raja S P et al 2008 Nanotechnology 19 485707

    Article  Google Scholar 

  44. Elliott S R 1987 Adv. Phys. 36 135

    Article  CAS  Google Scholar 

  45. Pilet J-C and Le Traon A 1979 Adv. Mol. Relax. Interact. Process. 14 235

    Article  CAS  Google Scholar 

  46. Kanehara K, Hoshina T, Takeda H and Tsurumi T 2015 J. Ceram. Soc. Jpn. 123 303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Dakhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Impact of hydrogenation on the structural, optical and dielectric properties of (Sb + Dy) co-doped TiO2 nanoparticles. Bull Mater Sci 46, 99 (2023). https://doi.org/10.1007/s12034-023-02936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02936-0

Keywords

Navigation