Skip to main content
Log in

Magnetic Pulse Welding of D9 Steel Tube to SS316LN End Plug

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The integrity of the fuel clad plays a pivotal role in the performance and safety of a nuclear reactor. The end plug of a fuel pin is conventionally joined to the clad tube using fusion welding techniques in fast breeder fuel fabrication routes. In the present study, joints between the D9 clad tubes and end plugs of SS 316LN were successfully developed using magnetic pulse welding (MPW). For this purpose, a 70 kJ,25 kV MPW machine, tool coil, field shaper and fixtures were developed. Process parameters were optimised by trial and error to give optimum results. The joints were qualified using several destructive and non-destructive welding methods. The leak rate of the joints was found to be 1.5 × 10–10 Pa.m3/s, and the microstructure of the joint interface showed a wavy morphology typical of sound MPW joints. X-ray computer tomography of the MPW joints showed uniformity in the joints. The quality of the joints remained unaltered even after the internal hydraulic pressure burst test. Therefore, the present work demonstrates the capability of MPW, a solid-state joining technique, to serve as an alternate method for joining the end plugs to the clad tubes in the fuel fabrication of a fast breeder reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mannan S L, Chetal S C, Raj B, and Bhoje S B, Trans Ind Inst Met 52 (2003) 89.

    Google Scholar 

  2. Babkin L T, albertov K K, Sannikov D V, Yashunskii A Y, and Peslyak O K, Weld Int 14 (2000) 162.

    Article  Google Scholar 

  3. Harinath Y V, Gopal K A, Murugan S, and Albert S K, J Nucl Mater 435 (2013) 32. https://doi.org/10.1016/j.jnucmat.2012.12.023.

    Article  CAS  Google Scholar 

  4. Murugan A, Sai S R, Raju R, Lakshminarayanan A K, and Albert S K, Adv Electron Forum 24 (2017) 40. https://doi.org/10.4028/www.scientific.net/aef.24.40

    Article  Google Scholar 

  5. Cui J, Sun G, Li G, Xu Z, Chu P K, Appl Phys Lett 105 (2014) 221901.

    Article  Google Scholar 

  6. Shankar V, Gill T P S, Mannan S L, Sadhana 28 (2003) 359. https://doi.org/10.1007/BF02706438

    Article  CAS  Google Scholar 

  7. Chard E, Welding Metallurgy of Stainless Steels. Springer, New York (1998).

    Google Scholar 

  8. Brooks J A, and Thompson A W, Int Mater Rev 36 (1991) 16.

    Article  CAS  Google Scholar 

  9. Srinivasan G, Divya M, and Albert S K, Weld World 54 (2010) R322. https://doi.org/10.1007/BF03266746

    Article  CAS  Google Scholar 

  10. Noh S, Kasada R, Oono N, Iwata N, and Kimura A, Fusion Eng Des 85 (2010) 1033.

    Article  CAS  Google Scholar 

  11. Patra S, Arora K, Shome M, and Bysakh S, J Mater Process Technol 245 (2017) 278. https://doi.org/10.1016/j.jmatprotec.2017.03.001

    Article  CAS  Google Scholar 

  12. Raoelisona R N, Sapanathan T, Buiron N, and Rachik M, J Manuf Process 20 (2015) 112. https://doi.org/10.1016/j.jmapro.2015.09.003

    Article  Google Scholar 

  13. Haiping Y, Fan Z, and Li C, J Mater Process Technol 214 (2014) 141. https://doi.org/10.1016/j.jmatprotec.2013.08.013.

    Article  CAS  Google Scholar 

  14. Shotri R, Faes K, and De A, J Manufact Process 58 (2020) 249. https://doi.org/10.1016/j.jmapro.2020.07.061.

    Article  Google Scholar 

  15. Psyk V, Risch D, Kinsey B, Tekkaya A, and Kleiner M, J Mater Process Technol 211 (2011) 787.

    Article  Google Scholar 

  16. Kapil A, and Sharma A, J Clean Prod 100 (2015) 35.

    Article  Google Scholar 

  17. Faes K, Kwee I, and De Waele W, Metals 9 (2019) 514.

    Article  CAS  Google Scholar 

  18. Cui J, Sun G, Xu J, Xu Z, Huang X, Li G, J Mater Process Technol 227 (2016) 138. https://doi.org/10.1016/j.jmatprotec.2015.08.008.

    Article  CAS  Google Scholar 

  19. Mishra S, Sharma S K, Kumar S, Sagar K, Meena M, and Shyam A, J Mater Process Technol 240 (2017) 168. https://doi.org/10.1016/j.jmatprotec.2016.09.020

    Article  CAS  Google Scholar 

  20. Lueg-Althoff J, Bellmann J, Hahn M, Schulze S, Gies S, Tekkaya A E, and Beyer E, J Mater Process Technol 279 (2020) 116562. https://doi.org/10.1016/j.jmatprotec.2019.116562. (https://www.sciencedirect.com/science/article/pii/S0924013619305357)

  21. Bellmann J, Schettler S, and Schulze S, Weld World 65 (2021) 199. https://doi.org/10.1007/s40194-020-01009-8

    Article  Google Scholar 

  22. Lee J G, Park J J, and Lee M K, Metall Mater Trans A 46 (2015) 3132. https://doi.org/10.1007/s11661-015-2905-5

    Article  CAS  Google Scholar 

  23. Faes K, Shotri R, and De A, J Manuf Mater Process 4 (2020) 118. https://doi.org/10.3390/jmmp4040118

    Article  Google Scholar 

  24. Kwee I, and Faes K, Key Eng Mater 710 (2016) 109.

    Article  Google Scholar 

  25. Kumar D, Kore S D, and Nandy A, Weld World 65 (2021) 1031. https://doi.org/10.1007/s40194-021-01081-8

    Article  CAS  Google Scholar 

  26. Furth H P, Levinne M A, and Waniek R W, Rev Sci Instrum 28 (1979) 7768.

    Google Scholar 

  27. Kumar D, Kore S D, and Nandy A, ASME J Manuf Sci Eng 143 (2020) 041004. https://doi.org/10.1115/1.4048431

    Article  Google Scholar 

  28. Zaitov O, and Kolchuzhin V A, J Manuf Process 16 (2014) 551.

    Article  Google Scholar 

  29. Knoepfel H, Pulsed High Magnetic Fields. North Holland Publishing Company (1970).

  30. Wu X, Shuai J, Shan K, Xu K, and Di Y, ASME J Pressure Vessel Technol 142 (2020) 054505. https://doi.org/10.1115/1.4047562

    Article  Google Scholar 

  31. Nichit S K, et al. in Anushaktinagar, Mumbai: Conference on Indigenous Nuclear Fuel programme in India-Achievements, Status and Prospects (2019) p 260.

  32. Bahrani A S, Black T J, and Crossland B, Proc R Soc A Math Phys Eng Sci 296 (1967) 123.

    CAS  Google Scholar 

  33. Shribman V, and Blakely M, Weld J 87 (2008) 56.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution made by Mrs. Supriya Barje for the timely preparation of required engineering drawings. The authors also like to thank the technical assistance rendered by Mr.Rajesh Kakad for conducting the experiments, Dr. R. Suresh Kumar, Head HTAS/SMD, IGCAR for conducting high pressure-temperature test. Mr.R. K. Rajawat, Head APPD & AD, BTDG, BARC and Dr. R. Tewari, Head MSD, BARC for the encouragement received during the development of this process, BRNS for financial support for this research work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, M.R., Kolge, T., Kumar, D. et al. Magnetic Pulse Welding of D9 Steel Tube to SS316LN End Plug. Trans Indian Inst Met 75, 171–182 (2022). https://doi.org/10.1007/s12666-021-02413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02413-4

Keywords

Navigation