Skip to main content
Log in

End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.L. Klueh and A.T. Nelson: J. Nucl. Mater., 2007, vol. 371, pp. 37-52.

    Article  Google Scholar 

  2. S. Kumar, R.P. Kushwaha, B.C. Maji, K. Bhanumurthy, and G.K. Dey: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 531-6.

    Article  Google Scholar 

  3. C. Cayron, E. Rath, I. Chu, and S. Launois: J. Nucl. Mater., 2004, vol. 335, pp. 83-102.

    Article  Google Scholar 

  4. X. Boulnat, D. Fabregue, M. Perez, M.-H. Mathon, and Y. Decarlan: Metall. Mater. Trans. A, 2014, vol. 44A, pp. 2461-5.

    Google Scholar 

  5. A.A. Nikitina, V.S. Ageev, A.P. Chukanov, V.V. Tsvelev, N.P. Porezanov, and O.A. Kruglov: J. Nucl. Mater., 2012, vol. 428, pp. 117-24.

    Article  Google Scholar 

  6. V.G. Krishnardula, N.I. Sofyan, W.F. Gale, and J.W. Fergus: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 497-500.

    Article  Google Scholar 

  7. M. Seki, K. Hirako, S. Kono, Y. Kihara, T. Kaito, and S. Ukai: J. Nucl. Mater., 2004, vol. 329-333, pp. 1534-8.

    Article  Google Scholar 

  8. D. Dean and M. Hidekazu: Comput. Mater. Sci., 2006, vol. 37, pp. 209-19.

    Article  Google Scholar 

  9. S. Noh, R. Kasada, N. Oono, N. Iwata, and A. Kimura: Fusion Eng. Design, 2010, vol. 85, pp. 1033-7.

    Article  Google Scholar 

  10. R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, and M. Habak: J. Mater. Process. Technol., 2013, vol. 213, pp. 1348-54.

    Article  Google Scholar 

  11. J. Y. Shim, I. S. Kim, K. J. Lee, and B. Y. Kang: Met. Mater. Int., 2011, vol. 17, pp. 957-61.

    Article  Google Scholar 

  12. Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, and G.S. Daehn: J. Mater. Process. Technol., 2011, vol. 211, pp. 944-52.

    Article  Google Scholar 

  13. J.H. Kim and S.H. Kim: J. Nucl. Mater., 2013, vol. 443, pp. 112-9.

    Article  Google Scholar 

  14. T. Jayakumar, M.D. Mathew, K. Laha, and R. Sandhya: Nucl. Eng. Des., 2013, vol. 265, pp. 1175-80.

    Article  Google Scholar 

  15. V. Krutikov, S. Paranin, V. Ivanov, A. Spirin, D. Koleukh, J.G. Lee, M.K. Lee, and C.K. Rhee: 6th Int. Conf. High Speed Forming, Daejeon, Korea, 2014, pp. 207–14.

  16. K.J. Lee, S. Kumai, T. Arai, and T. Aizawa: Mater. Sci. Eng. A, 2007, vol. A471, pp. 95-101.

    Article  Google Scholar 

  17. M. Watanabe and S. Kumai: Mater. Trans., 2009, vol. 50, pp. 286-92.

    Article  Google Scholar 

  18. A.P. Manogaran, P. Manoharan, D. Priem, S. Marya, and G. Racineux: J. Mater. Process. Technol., 2014, vol. 214, pp. 1236-44.

    Article  Google Scholar 

  19. A. Durgutlu, H. Okuyucu, and B. Gulenc: Mater. Des., 2008, vol. 29, pp. 1480-4.

    Article  Google Scholar 

  20. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317-31.

    Article  Google Scholar 

  21. Y. Zhang, S.S. Babu, and G.S. Daehn: J. Mater. Sci., 2010, vol. 45, pp. 4645-51.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Korea Atomic Energy Research Institute (KAERI) R&D Program and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2012M2A8A1027872). The authors also cordially appreciate Drs. T. Jayakumar and M. Vasudevan at IGCAR in India for supplying the 9Cr-ODS steel cladding tube and Drs. J. H. Kim and S. K. Park at KAERI in Korea for helping to carry out the burst test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Gu Lee or Min-Ku Lee.

Additional information

Manuscript submitted September 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JG., Park, JJ., Lee, MK. et al. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding. Metall Mater Trans A 46, 3132–3139 (2015). https://doi.org/10.1007/s11661-015-2905-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2905-5

Keywords

Navigation