Skip to main content
Log in

Investigation of V–N Micro-alloying Using Nitrogen Bottom Blowing

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Herein, a novel method of V–N micro-alloying was developed by adding ferrovanadium and nitrogen bottom blowing. For comparison, melting experiments were carried out by directly adding ferrovanadium nitride. Results indicate that nitrogen content increases rapidly and can reach the actual production level via nitrogen bottom blowing. TEM observations show that carbonitrides precipitate along the dislocation line, on the boundary of cementite and ferrite–cementite, and the ferrite grain boundary. Meanwhile, higher the nitrogen content in the steel, more the precipitates and higher dispersion will form, which indicates that addition of ferrovanadium first is better than blowing nitrogen first. Furthermore, the size, distribution and dispersion of carbonitrides obtained via the method of firstly adding ferrovanadium are comparable with that of directly adding ferrovanadium nitride. The results reveal that it is feasible to realize V–N micro-alloying by adding ferrovanadium and nitrogen bottom blowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Russwurm D, and Wille P, in ISS, Micro-Alloying’95, Pittsburgh, USA (1995), p 273.

  2. Pan T, and Yang C F, in 2009 National Symposium on Building Reinforcement Production, Design and Application Technology Exchange, China (2009), p 13.

  3. Korchynsky M, in 8th Process Tech, Iron and Steel Society (1988), p 79.

  4. Speer J G, Michael J R, and Hansen S S, Metall. Trans. A 18 (1987) 211.

    Article  Google Scholar 

  5. Llanos L, Pereda B, and Lopez B, Mater. Sci. Eng. 651 (2016) 358.

    Article  CAS  Google Scholar 

  6. Ollilainen V, Kasprzak W, and Holappa L, J. Mater. Process. Technol. 134 (2003) 405.

    Article  CAS  Google Scholar 

  7. Yang C F, and Wang Q L, J. Iron Steel Res. Int. 15 (2008) 1.

    CAS  Google Scholar 

  8. Kurtz R J, Hamilton M L, and Li H, J. Nucl. Mater. 258263 (1998) 1375.

    Article  Google Scholar 

  9. Pan H B, Zhang M J, and Liu W M, J. Iron Steel Res. Int. 24 (2017) 536.

    Article  Google Scholar 

  10. Yang C F, Hsla Steels Micro-Alloy. Offshore Eng. Steels 10 (2016) 69.

    CAS  Google Scholar 

  11. Bo W, Li Z T, and Zhan D P, Trans. Indian Inst. Met. 71 (2018) 1.

    Article  Google Scholar 

  12. Li Y, Wilson J A, and Craven A J, Met. Sci. J. 23 (2007) 509.

    CAS  Google Scholar 

  13. Zajac S, and Siwecki T B, ISIJ Int. 38 (2007) 1130.

    Article  Google Scholar 

  14. Zajac S, Lagneborg R, and Siwechi T, in ISS, Micro-Alloying’95, Pittsburgh, USA (1995), p 321.

  15. Cheng J, and Shen H, Trans. Indian Inst. Met. 71 (2018) 2433.

    Article  CAS  Google Scholar 

  16. Ke X T, Zhang K J, and Cheng X D, in China Institute of Metals 2004 Microalloyed Non-tempered Steel Technology Exchange Conference, China (2004).

  17. Jing H Q, Huang X L, and Huang Z B, Met. World 20 (2013) 37.

    Google Scholar 

  18. Lagneborg R, Siwecki T, and Zajac S, Scand. J. Metall. 28 (1999) 186.

    CAS  Google Scholar 

  19. Gunduz S, and Cochrane R C, Mater. Des. 26 (2005) 486.

    Article  Google Scholar 

  20. Wang H L, Li Y C, and Zhao R L, Iron Steel Vanadium Titan. 35 (2014) 59.

    Google Scholar 

  21. Cheng J, and Shen H F, Trans. Indian Inst. Met. 71 (2018) 2433.

    Article  CAS  Google Scholar 

  22. Xu X F, Iron Steel Vanadium Titan. 24 (2003) 46.

    Google Scholar 

  23. Wang G H, Chen Y M, and Zhu Y K, Iron Steel Vanadium Titan. 9 (1988) 19.

    Google Scholar 

  24. Goddard J B, and Merkert R F, US 4562057 A (1985).

  25. Lv X F, Cong H Y, and Zhang Y, Spec. Steel 30 (2009) 46.

    Google Scholar 

  26. Kang W, Kang L, and Zhao T, in The 17th National Academic Conference on Steelmaking, the Chinese Society for Metals, Hangzhou, China (2013) 379.

  27. Li X L, Cai Q W, and Yu W, Heat Treat. Met. 38 (2013) 35.

    Article  Google Scholar 

  28. Gomez M, Rancel L, and Escudero E, J. Mater. Sci. Technol. 30 (2014) 511.

    Article  CAS  Google Scholar 

  29. Meng Z B, Zhou C Y, and Liu X B, Trans. Indian Inst. Met. 72 (2019) 1757.

    Article  CAS  Google Scholar 

  30. Zhang J, Hu N S T, and You G Y, Trans. Mater. Heat Treat. 28 (2007) 14.

    Google Scholar 

  31. Zhang Z H, Liu Y, and Zhou Y N, Mater. Sci. Eng. A 738 (2018) 203.

    Article  CAS  Google Scholar 

  32. Adamczyk J, Kalinowska-Ozgowicz E, and Ozgowicz W, J. Mater. Process. Technol. 53 (1995) 23.

    Article  Google Scholar 

  33. Wang Y W, Gui M W, and Zhou Y, Trans. Mater. Heat Treat. 32 (2011) 82.

    Google Scholar 

  34. Ali I H M, Moustafa I M, and Farid A M, Mater. Sci. Forum 500–501 (2005) 503.

    Google Scholar 

  35. Taylor K A, Scr. Metall. Mater. 32 (1995) 1.

    Article  Google Scholar 

  36. Hudd R C, Jones A, and Kale M N, ISIJ 209 (1971) 121.

    CAS  Google Scholar 

  37. Speer J G, Michael J R, and Hansen S S, Metall. Mater. Trans. A 18 (1987) 211.

    Article  Google Scholar 

  38. Zhao F, Wu M, and Jiang B, Mater. Sci. Eng. A 731 (2018) 360.

    Article  CAS  Google Scholar 

  39. Zhang S, Liu K, and Chen H, Mater. Sci. Eng. A 651 (2016) 951.

    Article  CAS  Google Scholar 

  40. Sun B M, Ji H Z, and Yang C F, Iron Steel 38 (2001) 44.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from Graduate Student Innovation Fund of North China University of Science and Technology “Basic Research on V–N micro-alloying Using Nitrogen Bottom Blowing and Adding Ferrovanadium” (Grant No. 2018B01), National Natural Science Foundation of China “Fundamental Research of Preparating Sm–Fe–N Powder with High Pressure Metallurgy and Gas Atomizating Quenching” (Grant No. 51574104) and “Research on Mechanism of High Pressure Nitriding Melting and Solidification in Stainless Steel Micro-bath” (Grant No. 51774139), and Natural Science Foundation of Hebei Province (Grant No. E2019209597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, G., Zhao, D., Wang, S. et al. Investigation of V–N Micro-alloying Using Nitrogen Bottom Blowing. Trans Indian Inst Met 73, 2693–2701 (2020). https://doi.org/10.1007/s12666-020-02083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02083-8

Keywords

Navigation