Skip to main content
Log in

Effect of SPS consolidation and heat treatment on microstructure and mechanical behavior of Fe–Cr–Al–Y2O3 ODS alloys with different Ti and V contents

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Oxide dispersion strengthened (ODS) alloys, due to their high irradiation resistance and good mechanical properties at high temperatures, are promising for applications in Generation IV reactors, especially GFR, and fusion installations. However, the biggest challenge in applying ODS materials is related to fabrication techniques. This paper aims to evaluate powder metallurgy processing and the effect of small additions of oxide- and carbide-forming elements on the microstructure and mechanical properties of Fe–Cr–Al-based ODS alloys. The series of ODS alloys with Y2O3 and different additions of Ti and V was prepared by mechanical alloying (MA) and consolidated by spark plasma sintering (SPS), which is less often employed to fabricate ODS alloys than hot extrusion or hot isostatic pressing. The investigations were performed on MAed powders, bulk-sintered samples, and samples after homogenization annealing. The MAed powders reveal two body-centered cubic (bcc) alloyed phases with close lattice parameters. The sintered samples show a single bcc phase (a = 2.88–2.89 Å) matrix and a high-volume fraction of homogenously distributed nanometric oxide precipitates. The addition of vanadium and titanium leads to the formation of vanadium- and titanium-rich nanometric oxides and carbides. The bulk samples show fine grain and stable microstructure with an average grain size slightly below 1 µm. Moreover, after homogenization annealing and air cooling, the relative density slightly increases. Hardness after heat treatment is relatively stable, which was confirmed by nanoindentation and Vickers microhardness results. These experimental findings promise to develop Fe–Cr–Al-based ODS materials tailored for operation under harsh conditions in nuclear reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Abram T, Ion S. Generation-IV nuclear power: a review of the state of the science. Energy Policy. 2008;36:4323–30. https://doi.org/10.1016/J.ENPOL.2008.09.059.

    Article  Google Scholar 

  2. Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater. 2009;385:217–22. https://doi.org/10.1016/J.JNUCMAT.2008.11.026.

    Article  ADS  CAS  Google Scholar 

  3. Meza A, Macía E, Chekonin P, Altstadt E, Rabanal ME, Torralba JM, Campos M. The effect of composition and microstructure on the creep behaviour of 14 Cr ODS steels consolidated by SPS. Mater Sci Eng A. 2022;849:143441. https://doi.org/10.1016/J.MSEA.2022.143441.

    Article  CAS  Google Scholar 

  4. Sakamoto K, Miura Y, Ukai S, Oono NH, Kimura A, Yamaji A, Kusagaya K, Takano S, Kondo T, Ikegawa T, Ioka I, Yamashita S. Development of accident tolerant FeCrAl-ODS fuel cladding for BWRs in Japan. J Nucl Mater. 2021;557:153276. https://doi.org/10.1016/J.JNUCMAT.2021.153276.

    Article  CAS  Google Scholar 

  5. Rahman MM, Dongxu J, Jahan N, Salvatores M, Zhao J. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: a review. Prog Nucl Energy. 2020;124:103320. https://doi.org/10.1016/J.PNUCENE.2020.103320.

    Article  CAS  Google Scholar 

  6. Isselin J, Kasada R, Kimura A. Corrosion behaviour of 16%Cr–4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment. Corros Sci. 2010;52:3266–70. https://doi.org/10.1016/J.CORSCI.2010.05.043.

    Article  CAS  Google Scholar 

  7. Hino T, Miwa J, Mitsuyasu T, Ishii Y, Ohtsuka M, Moriya K, Shirvan K, Seker V, Hall A, Downar T, Gorman PM, Fratoni M, Greenspan E. Core design and analysis of axially heterogeneous boiling water reactor for burning transuranium elements. Nucl Sci Eng. 2017;187:213–39. https://doi.org/10.1080/00295639.2017.1312941.

    Article  ADS  Google Scholar 

  8. Maréchal L, Lesage B, Huntz AM, Molins R. Oxidation behavior of ODS Fe–Cr–Al alloys: aluminum depletion and lifetime. Oxid Met. 2003;60:1–28. https://doi.org/10.1023/A:1024604428747/METRICS.

    Article  Google Scholar 

  9. Terrani KA. Accident tolerant fuel cladding development: promise, status, and challenges. J Nucl Mater. 2018;501:13–30. https://doi.org/10.1016/J.JNUCMAT.2017.12.043.

    Article  ADS  CAS  Google Scholar 

  10. Kane KA, Lee SK, Bell SB, Brown NR, Pint BA. Burst behavior of nuclear grade FeCrAl and Zircaloy-2 fuel cladding under simulated cyclic dryout conditions. J Nucl Mater. 2020;539:152256. https://doi.org/10.1016/J.JNUCMAT.2020.152256.

    Article  CAS  Google Scholar 

  11. Kobayashi S, Takasugi T. Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scr Mater. 2010;63:1104–7. https://doi.org/10.1016/J.SCRIPTAMAT.2010.08.015.

    Article  CAS  Google Scholar 

  12. Han W, Yabuuchi K, Kimura A, Ukai S, Oono N, Kaito T, Torimaru T, Hayashi S. Effect of Cr/Al contents on the 475°C age-hardening in oxide dispersion strengthened ferritic steels. Nucl Mater Energy. 2016;9:610–5. https://doi.org/10.1016/J.NME.2016.05.015.

    Article  Google Scholar 

  13. Li W, Lu S, Hu QM, Mao H, Johansson B, Vitos L. The effect of Al on the 475 °C embrittlement of Fe–Cr alloys. Comput Mater Sci. 2013;74:101–6. https://doi.org/10.1016/J.COMMATSCI.2013.03.021.

    Article  CAS  Google Scholar 

  14. Wang X, Lu Z, Li Z, Shi Y, Xu H. Effect of Zr content on microstructure and hardness of ODS-FeCrAl alloys. Mater Charact. 2022;192:112221. https://doi.org/10.1016/J.MATCHAR.2022.112221.

    Article  CAS  Google Scholar 

  15. Yang TX, Li ZX, Zhou CJ, Xu YC, Dou P. Effects of Zr and/or Ti addition on the morphology, crystal and metal/oxide interface structures of nanoparticles in FeCrAl-ODS steels. J Nucl Mater. 2023;585: 154613. https://doi.org/10.1016/J.JNUCMAT.2023.154613.

    Article  CAS  Google Scholar 

  16. Massey CP, Edmondson PD, Unocic KA, Yang Y, Dryepondt SN, Kini A, Gault B, Terrani KA, Zinkle SJ. The effect of Zr on precipitation in oxide dispersion strengthened FeCrAl alloys. J Nucl Mater. 2020;533:152105. https://doi.org/10.1016/J.JNUCMAT.2020.152105.

    Article  CAS  Google Scholar 

  17. Jasinski JJ, Stasiak T, Chmurzynski W, Kurpaska L, Chmielewski M, Frelek-Kozak M, Wilczopolska M, Mulewska K, Zielinski M, Kowal M, Diduszko R, Chrominski W, Jagielski J. Microstructure and phase investigation of FeCrAl–Y2O3 ODS steels with different Ti and V contents. J Nucl Mater. 2023;586:154700. https://doi.org/10.1016/J.JNUCMAT.2023.154700.

    Article  CAS  Google Scholar 

  18. Oksiuta Z, Lewandowska M, Kurzydlowski KJ, Baluc N. Effect of vanadium addition on the microstructure and mechanical properties of the ODS ferritic steels. J Nucl Mater. 2013;442:S84–8. https://doi.org/10.1016/J.JNUCMAT.2012.10.022.

    Article  ADS  CAS  Google Scholar 

  19. Wang J, Long D, Yu L, Liu Y, Li H, Wang Z. Influence of Al addition on the microstructure and mechanical properties of Zr-containing 9Cr-ODS steel. J Mater Res Technol. 2021;13:1698–708. https://doi.org/10.1016/J.JMRT.2021.05.112.

    Article  CAS  Google Scholar 

  20. Ding ZN, Zhang CH, Yang YT, Song Y, Kimura A, Jang J. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions. J Nucl Mater. 2017;493:53–61. https://doi.org/10.1016/J.JNUCMAT.2017.05.040.

    Article  ADS  CAS  Google Scholar 

  21. Capdevila C, Aranda MM, Rementeria R, Domínguez-Reyes R, Urones-Garrote E, Miller MK. Influence of nanovoids on α–α′ phase separation in FeCrAl oxide dispersion strengthened alloy. Scr Mater. 2016;110:53–6. https://doi.org/10.1016/J.SCRIPTAMAT.2015.07.044.

    Article  CAS  Google Scholar 

  22. Frelek-Kozak M, Kurpaska L, Wyszkowska E, Jagielski J, Pawlak W, Jozwik I, Chmielewski M, Perkowski K, Lewandowska M. Influence of consolidation process on functional properties of steels. Surf Coat Technol. 2018;355:234–9. https://doi.org/10.1016/J.SURFCOAT.2018.02.049.

    Article  CAS  Google Scholar 

  23. Zhang H, Huang Y, Ning H, Williams CA, London AJ, Dawson K, Hong Z, Gorley MJ, Grovenor CRM, Tatlock GJ, Roberts SG, Reece MJ, Yan H, Grant PS. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering. J Nucl Mater. 2015;464:61–8. https://doi.org/10.1016/J.JNUCMAT.2015.04.029.

    Article  ADS  CAS  Google Scholar 

  24. Frelek-Kozak M, Kurpaska Ł, Mulewska K, Zieliński M, Diduszko R, Kosińska A, Kalita D, Chromiński W, Turek M, Kaszyca K, Zaborowska A, Jagielski J. Mechanical behavior of ion-irradiated ODS RAF steels strengthened with different types of refractory oxides. Appl Surf Sci. 2023;610:155465. https://doi.org/10.1016/J.APSUSC.2022.155465.

    Article  CAS  Google Scholar 

  25. Das A, Chekhonin P, Altstadt E, McClintock D, Bergner F, Heintze C, Lindau R. Microstructure and fracture toughness characterization of three 9Cr ODS EUROFER steels with different thermo-mechanical treatments. J Nucl Mater. 2020;542:152464. https://doi.org/10.1016/J.JNUCMAT.2020.152464.

    Article  CAS  Google Scholar 

  26. Ohtsuka S, Kaito T, Inoue M, Asayama T, Kim SW, Ukai S, Narita T, Sakasegawa H. Effects of aluminum on high-temperature strength of 9Cr–ODS steel. J Nucl Mater. 2009;386–388:479–82. https://doi.org/10.1016/J.JNUCMAT.2008.12.147.

    Article  ADS  Google Scholar 

  27. García-Rodríguez N, Campos M, Torralba JM, Berger MH, Bienvenu Y. Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels. Mater Sci Technol. 2014;30:1676–84. https://doi.org/10.1179/1743284714Y.0000000595.

    Article  ADS  CAS  Google Scholar 

  28. Macía E, García-Junceda A, Serrano M, Hernández-Mayoral M, Diaz LA, Campos M. Effect of the heating rate on the microstructure of a ferritic ODS steel with four oxide formers (Y–Ti–Al–Zr) consolidated by spark plasma sintering (SPS). J Nucl Mater. 2019;518:190–201. https://doi.org/10.1016/J.JNUCMAT.2019.02.043.

    Article  ADS  Google Scholar 

  29. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  CAS  Google Scholar 

  30. Chen CL, Dong YM. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe–Cr–Al ODS alloys. Mater Sci Eng A. 2011;528:8374–80. https://doi.org/10.1016/J.MSEA.2011.08.041.

    Article  CAS  Google Scholar 

  31. Xu S, Zhou Z, Jia H, Yao Z. Microstructure characterization and mechanical properties of Al alloyed 9Cr ODS steels with different Al contents. Steel Res Int. 2019;90:1800594. https://doi.org/10.1002/SRIN.201800594.

    Article  Google Scholar 

  32. Wyszkowska E, Kurpaska L, Frelek-Kozak M, Jozwik I, Perkowski K, Jagielski J. Investigation of the mechanical properties of ODS steels at high temperatures using nanoindentation technique. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2019;444:107–11. https://doi.org/10.1016/J.NIMB.2019.02.021.

    Article  ADS  CAS  Google Scholar 

  33. García-Junceda A, Macía E, Garbiec D, Serrano M, Torralba JM, Campos M. Effect of small variations in Zr content on the microstructure and properties of ferritic ODS steels consolidated by SPS. Metals (Basel). 2020;10:348. https://doi.org/10.3390/MET10030348.

    Article  Google Scholar 

  34. Gates-Rector S, Blanton T. The powder diffraction file: a quality materials characterization database. Powder Diffr. 2019;34:352–60. https://doi.org/10.1017/S0885715619000812.

    Article  ADS  CAS  Google Scholar 

  35. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83. https://doi.org/10.1557/JMR.1992.1564.

    Article  ADS  CAS  Google Scholar 

  36. Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41:763–77. https://doi.org/10.1007/S10853-006-6555-2.

    Article  ADS  CAS  Google Scholar 

  37. Sun QX, Zhang T, Wang XP, Fang QF, Hao T, Liu CS. Microstructure and mechanical properties of oxide dispersion strengthened ferritic steel prepared by a novel route. J Nucl Mater. 2012;424:279–84. https://doi.org/10.1016/J.JNUCMAT.2011.12.020.

    Article  ADS  CAS  Google Scholar 

  38. Mori A, Mamiya H, Ohnuma M, Ilavsky J, Ohishi K, Woźniak J, Olszyna A, Watanabe N, Suzuki J, Kitazawa H, Lewandowska M. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy. J Nucl Mater. 2018;501:72–81. https://doi.org/10.1016/J.JNUCMAT.2018.01.025.

    Article  ADS  CAS  Google Scholar 

  39. Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang CH, Isselin J, Dou P, Lee JH, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe TF. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater. 2011;417:176–9. https://doi.org/10.1016/J.JNUCMAT.2010.12.300.

    Article  ADS  CAS  Google Scholar 

  40. Takaya S, Furukawa T, Müller G, Heinzel A, Jianu A, Weisenburger A, Aoto K, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T, Kimura A. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth. J Nucl Mater. 2012;428:125–30. https://doi.org/10.1016/J.JNUCMAT.2011.06.046.

    Article  ADS  CAS  Google Scholar 

  41. Proriol Serre I, Vogt JB. Mechanical behavior in liquid lead of Al2O3 coated 15–15Ti steel and an alumina-forming austenitic steel designed to mitigate their corrosion. Eng Fail Anal. 2022;139:106443. https://doi.org/10.1016/J.ENGFAILANAL.2022.106443.

    Article  CAS  Google Scholar 

  42. Li Y, Shen J, Li F, Yang H, Kano S, Matsukawa Y, Satoh Y, Fu H, Abe H, Muroga T. Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels. Mater Sci Eng A. 2016;654:203–12. https://doi.org/10.1016/J.MSEA.2015.12.032.

    Article  CAS  Google Scholar 

  43. Dash MK, Mythili R, Ravi R, Sakthivel T, Dasgupta A, Saroja S, Bakshi SR. Microstructure and mechanical properties of oxide dispersion strengthened 18Cr-ferritic steel consolidated by spark plasma sintering. Mater Sci Eng A. 2018;736:137–47. https://doi.org/10.1016/J.MSEA.2018.08.093.

    Article  CAS  Google Scholar 

  44. Boulnat X, Perez M, Fabregue D, Douillard T, Mathon MH, De Carlan Y. Microstructure evolution in nano-reinforced ferritic steel processed by mechanical alloying and spark plasma sintering. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:1485–97. https://doi.org/10.1007/s11661-013-2107-y.

    Article  ADS  CAS  Google Scholar 

  45. Heintze C, Bergner F, Hernández-Mayoral M, Kögler R, Müller G, Ulbricht A. Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: effect of helium implantation and iron-ion irradiation at 300°C including sequence effects. J Nucl Mater. 2016;470:258–67. https://doi.org/10.1016/J.JNUCMAT.2015.12.041.

    Article  ADS  CAS  Google Scholar 

  46. Lu C, Lu Z, Wang X, Xie R, Li Z, Higgins M, Liu C, Gao F, Wang L. Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation. Sci Rep. 2017;2017(7):1–7. https://doi.org/10.1038/srep40343.

    Article  CAS  Google Scholar 

  47. Gong M, Zhou Z, Hu H, Zhang G, Li S, Wang M. Effects of aluminum on microstructure and mechanical behavior of 14Cr–ODS steels. J Nucl Mater. 2015;462:502–7. https://doi.org/10.1016/J.JNUCMAT.2014.12.079.

    Article  ADS  CAS  Google Scholar 

  48. Oh SR, Kano S, Yang H, McGrady J, Abe H. Radiation-induced nanoparticle growth in 12Cr-ODS steel at elevated temperature. J Nucl Mater. 2020;538:152192. https://doi.org/10.1016/J.JNUCMAT.2020.152192.

    Article  CAS  Google Scholar 

  49. Hong KH, Seol JB, Kim JH. First principles determination of formation of a Cr shell on the interface between Y–Ti–O nanoparticles and a ferritic steel matrix. Appl Surf Sci. 2019;481:69–74. https://doi.org/10.1016/J.APSUSC.2019.03.081.

    Article  ADS  CAS  Google Scholar 

  50. Larson DJ, Maziasz PJ, Kim IS, Miyahara K. Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe–12Cr–3W–0.4Ti + Y2O3 ferritic alloy. Scr Mater. 2001;44:359–64. https://doi.org/10.1016/S1359-6462(00)00593-5.

    Article  CAS  Google Scholar 

  51. Odette GR. On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science. Scr Mater. 2018;143:142–8. https://doi.org/10.1016/J.SCRIPTAMAT.2017.06.021.

    Article  CAS  Google Scholar 

  52. Lopez J, Cerne R, Ho D, Madigan D, Shen Q, Yang B, Corpus J, Jarosinski W, Wang H, Zhang X. In situ reactive formation of mixed oxides in additively manufactured cobalt alloy. Materials (Basel). 2023;16:3707. https://doi.org/10.3390/MA16103707.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith TM, Kantzos CA, Zarkevich NA, Harder BJ, Heczko M, Gradl PR, Thompson AC, Mills MJ, Gabb TP, Lawson JW. A 3D printable alloy designed for extreme environments. Nature. 2023;617:513–8. https://doi.org/10.1038/s41586-023-05893-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Auger MA, De Castro V, Leguey T, Muñoz A, Pareja R. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering. J Nucl Mater. 2013;436:68–75. https://doi.org/10.1016/J.JNUCMAT.2013.01.331.

    Article  ADS  CAS  Google Scholar 

  55. Auger MA, De Castro V, Leguey T, Tarcísio-Costa J, Monge MA, Muñoz A, Pareja R. Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels. J Nucl Mater. 2014;455:600–4. https://doi.org/10.1016/J.JNUCMAT.2014.08.040.

    Article  ADS  CAS  Google Scholar 

  56. Kurpaska L, Jozwik I, Lewandowska M, Jagielski J. The effect of Ar-ion irradiation on nanomechanical and structural properties of ODS RAF steels manufactured by using HIP technique. Vacuum. 2017;145:144–52. https://doi.org/10.1016/J.VACUUM.2017.08.039.

    Article  ADS  CAS  Google Scholar 

  57. Grobner PJ. The 885°F (475°C) embrittlement of ferritic stainless steels. Metall Trans. 1973;4:251–60. https://doi.org/10.1007/BF02649625/METRICS.

    Article  CAS  Google Scholar 

  58. Sang W, Dou P, Kimura A. Early-stage thermal ageing behavior of 12Cr, 12Cr–7Al and 18Cr–9Al ODS steels. J Nucl Mater. 2020;535: 152164. https://doi.org/10.1016/J.JNUCMAT.2020.152164.

    Article  CAS  Google Scholar 

  59. Jang KN, Kim TK, Kim KT. The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel. Nucl Eng Technol. 2019;51:249–56. https://doi.org/10.1016/J.NET.2018.09.021.

    Article  CAS  Google Scholar 

  60. Gong J, Li Y. Energy-balance analysis for the size effect in low-load hardness testing. J Mater Sci. 2000;35:209–13. https://doi.org/10.1023/A:1004777607553.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results was carried out in the frame of the SafeG project and is partly funded by the European Commission Horizon 2020 Framework Programme under grant agreement No. 945041. The authors Jaroslaw J. Jasinski, Lukasz Kurpaska, Magdalena Wilczopolska, Katarzyna Mulewska, Maciej Zielinski, and Jacek Jagielski acknowledge the support from the European Union Horizon 2020 research and innovation program under NOMATEN Teaming grant agreement no. 857470 and from the European Regional Development Fund via the Foundation for Polish Science International Research Agenda Plus program grant no. MAB PLUS/2018/8 which partially covered their salaries during preparation of this article. Dr. Anna Kosińska is acknowledged for her help in performing and analyzing electron microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Stasiak.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stasiak, T., Jasiński, J.J., Kurpaska, Ł. et al. Effect of SPS consolidation and heat treatment on microstructure and mechanical behavior of Fe–Cr–Al–Y2O3 ODS alloys with different Ti and V contents. Archiv.Civ.Mech.Eng 24, 76 (2024). https://doi.org/10.1007/s43452-024-00889-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00889-7

Keywords

Navigation