Skip to main content
Log in

Modeling and Optimization of the Yield Strength and Tensile Strength of Al7075 Butt Joint Produced by FSW and SFSW Using RSM and Desirability Function Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is introduced as a solid-state welding process. Despite the many benefits of the FSW, the effects of the thermal cycles in this process are causing softening of the joint. This phenomenon generally occurs in heat-treatable aluminum alloys and results in reduced mechanical properties of the joint. To solve this limitation, submerged friction stir welding (SFSW) has been developed which is suitable for welding of heat-sensitive alloys. In this study, 31 butt joints were first produced from Al7075-T6 using the FSW. For this purpose, the response surface methodology was selected as the design of experiments method, and the variables: tool rotational speed, tool feed rate, tool shoulder diameter, and tool tilt angle were determined as the input variables. Then, the statistical analysis of the parameters affecting the yield strength and tensile strength of the joints was investigated. Then, 10 joints were produced using the SFSW based on the optimal values of the tool feed rate and tool tilt angle. Results of the ANOVA and regression analysis of the experimental data confirmed the accuracy and precision of regression equations and showed that the linear, interactional and quadratic terms of tool shoulder diameter and tool rotational speed effect on the yield strength and ultimate tensile strength of submerged joints. Also, the optimal conditions of input variables were determined by the desirability method and confirmed by the verification test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Qin B, Yin F C, Zeng C Z, Xie J C, and Shen J, Trans Nonferrous Met Soc China 29 (2019) 1864.

    Article  CAS  Google Scholar 

  2. Tamasgavabari R, Ebrahimi A R, Abbasi S M, and Yazdipour A R, J Manuf Process 49 (2020) 413.

    Article  Google Scholar 

  3. Thomas W M, Nicholas E D, Needham J C, Murch M G, Smith P T, and Dawes C J, Friction Stir Butt Welding. Int. Patent No. PCT/GB92/02203 (1991).

  4. Guerra M, Schmidt C, Mcclure L C, Murr L E, and Nunes A C, Mater Charact 49 (2003) 95.

    Article  Google Scholar 

  5. Rhodes C G, Mahoney M W, Bingel W H, Spurling R A, and Bampton C C, Scr Mater 36 (1997) 69.

    Article  CAS  Google Scholar 

  6. Zhao J, Jiang F, Jian H G, Wen K, Jiang L, and Chen X B, Mater Des 31 (2010) 306.

    Article  Google Scholar 

  7. Steel R J, Packer S M, Fleck R D, Sanderson S, and Tucker C, in Proceedings of the 1st International Joint Symposium on Joining and Welding, (eds) Fujii H, Woodhead Publishing (2013), p 125.

  8. Thomas W M, and Nicholas E D, Mater Des 18 (1997) 269.

    Article  CAS  Google Scholar 

  9. Siddiquee A N, and Pandey S, Int J Adv Manuf Technol 73 (2014) 479.

    Article  Google Scholar 

  10. Gite R A, Loharkar P K, and Shimpi R, Mater Today Proc 19 (2019) 361.

    Google Scholar 

  11. Cho J H, Han S H, and Lee C, Mater Lett 180 (2016) 157.

    Article  CAS  Google Scholar 

  12. Woo W, Balogh L, Ungár T, Choo H, and Feng Z, Mater Sci Eng A 498 (2008) 308.

    Article  Google Scholar 

  13. Jata K V, and Semiatin S L, Scr Mater 43 (2000) 743.

    Article  CAS  Google Scholar 

  14. Liu H J, Fujii H, Maeda M, and Nogi K, Mater Sci Lett 22 (2003) 1061.

    Article  CAS  Google Scholar 

  15. Guo Y, Ma Y, and Wang F, Theor Appl Fract Mech 104 (2019) 102372.

    Article  CAS  Google Scholar 

  16. Cabibbo M, Mcqueen H J, Evangelista E, Spigarelli S, Paola M D, and Falchero A, Mater Sci Eng A 460–461 (2007) 86.

    Article  Google Scholar 

  17. Fratini L, Buffa G, and Shivpuri R, Int J Adv Manuf Technol 43 (2009) 664.

    Article  Google Scholar 

  18. Sakurada D, Katoh K, and Tokisue H, J Jpn Inst Light Met 52 (2002) 2.

    Article  CAS  Google Scholar 

  19. Derazkola H A, and Khodabakhshi F, Int J Adv Manuf Technol 102 (2019) 4383.

    Article  Google Scholar 

  20. Rouzbehani R, Kokabi A H, Sabet H, Paidar M, and Ojo O O, J Mater Process Technol 262 (2018) 239.

    Article  CAS  Google Scholar 

  21. Mofid M A, Abdollah-Zadeh A, Ghaini F M, and Gur C H, Metall Mater Trans A 43 (2012) 5106.

    Article  CAS  Google Scholar 

  22. Sabari S S, Malarvizhi S, Balasubramanian V, and Reddy G M, Def Technol 12 (2016) 324.

    Article  Google Scholar 

  23. Zhang H J, Liu H J, and Yu L, Mater Des 32 (2011) 4402.

    Article  CAS  Google Scholar 

  24. Nelson T W, Steel R J, and Arbegast W J, Sci Technol Weld Join 8 (2003) 283.

    Article  CAS  Google Scholar 

  25. Xua W F, Liu J H, Chen D L, Luan G H, and Yao J S, Mater Sci Eng A 548 (2012) 89.

    Article  Google Scholar 

  26. Liu H J, Zhang H J, Huang Y X, and Lei Y, Trans Nonferrous Met Soc China 20 (2010) 1387.

    Article  CAS  Google Scholar 

  27. Wang Q, Zhao Z, Zhao Y, Yan K, and Zhang H, Mater Des 88 (2015) 1366.

    Article  CAS  Google Scholar 

  28. Liu H J, Zhang H J, and Yu L, Mater Des 32 (2011) 1548.

    Article  CAS  Google Scholar 

  29. Zhang H, and Liu H, Mater Des 45 (2013) 206.

    Article  CAS  Google Scholar 

  30. Zhang H J, Liu H J, and Yu L, J Mater Eng Perform 21 (2012) 1182.

    Article  CAS  Google Scholar 

  31. Wang Q, Zhao Y, Yan K, and Lu S, Mater Des 68 (2015) 97.

    Article  CAS  Google Scholar 

  32. Kishta E E, and Darras B, Proc Inst Mech Eng Part B J Eng Manuf 230 (2014) 458.

    Article  Google Scholar 

  33. Sabari S S, Malarvizhi S, and Balasubramanian V, J Mater Process Technol 237 (2016) 286.

    Article  CAS  Google Scholar 

  34. Pei X, and Dong P, Int J Adv Manuf Technol 95 (2018) 3549.

    Article  Google Scholar 

  35. Chen C M, and Kovacevic R, Int J Mach Tools Manuf 43 (2003) 1319.

    Article  Google Scholar 

  36. Myers R H, Montgomery D C, and Anderson-Cook C M, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, Hoboken (2016), ISBN 978-1-118-91601-8.

    Google Scholar 

  37. Vahdati M, and Moradi M, Iran J Mater Form 7 (2020) 32.

    Google Scholar 

  38. Moradi M, Arabi H, and Shamsborhan M, Optik 202 (2020) 163619.

    Article  CAS  Google Scholar 

  39. Design Expert Software, http://www.statease.com, available in 1 April 2020.

  40. Online Materials Information Resource, http://www.matweb.com, available in 1 April 2020.

  41. Heat Treatment of Aluminum Alloys, Aerospace Material Specification, AMSH6088 (1997).

  42. Montgomery D C, Design and Analysis of Experiments, Wiley, Hoboken (2017), ISBN 978-1-119-11347-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Vahdati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahdati, M., Moradi, M. & Shamsborhan, M. Modeling and Optimization of the Yield Strength and Tensile Strength of Al7075 Butt Joint Produced by FSW and SFSW Using RSM and Desirability Function Method. Trans Indian Inst Met 73, 2587–2600 (2020). https://doi.org/10.1007/s12666-020-02075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02075-8

Keywords

Navigation