Skip to main content
Log in

Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The heat-affected zone (HAZ) is generally the intrinsic weakest location of the normal friction stir welded precipitate hardened aluminum alloys. In order to improve the mechanical properties of the HAZ by controlling the temperature level, underwater friction stir welding (FSW) of an Al-Cu aluminum alloy was conducted in the present study. The results indicate that the hardness of the HAZ can be improved through underwater FSW. Microstructural analysis reveals that the hardness improvement is attributed to the lowering of precipitate coarsening level and the narrowing of precipitate free zone, which are essentially induced by the variations of welding thermal cycles under the cooling effect of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Johnsen, Friction Stir Welding Takes Off at Boeing, Weld. J., 1999, 78, p 35–39

    CAS  Google Scholar 

  2. D. Joelj, The Friction Stir Welding Advantage, Weld. J., 2001, 80, p 30–34

    Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. Rep., 2005, 50, p 1–78

    Article  Google Scholar 

  4. G. Liu, L.E. Murr, C.S. Niou, J.C. Mcclure, and F.R. Vega, Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum, Scripta Mater., 1997, 37, p 355–361

    Article  CAS  Google Scholar 

  5. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminum Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063

    Article  CAS  Google Scholar 

  6. W.A. Baeslack, K.V. Jata, and T.J. Lienert, Structure, Properties and Fracture of Friction Stir Welds in a High-Temperature Al-8.5Fe-1.3V-1.7Si Alloy (AA-8009), J. Mater. Sci., 2006, 41, p 2939–2951

    Article  CAS  Google Scholar 

  7. M. Cabibbo, H.J. McQueen, E. Evangelista, S. Spigarelli, M. Di Paola, and A. Falchero, Microstructure and Mechanical Property Studies of AA6056 Friction Stir Welded Plate, Mater. Sci. Eng. A, 2007, 460- 461, p 86–94

    Article  Google Scholar 

  8. R.W. Fonda and J.F. Bingert, Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld, Metall. Mater. Trans. A, 2004, 35, p 1487–1499

    Article  Google Scholar 

  9. T.S. Srivatsan, S. Vasudevan, and L. Park, The Tensile Deformation and Fracture Behavior of Friction Stir Welded Aluminum Alloy 2024, Mater. Sci. Eng. A, 2007, 466, p 235–245

    Article  Google Scholar 

  10. A. Sullivan and J.D. Robson, Microstructural Properties of Friction Stir Welded and Post-Weld Heat-Treated 7449 Aluminium Alloy Thick Plate, Mater. Sci. Eng. A, 2008, 478, p 351–360

    Article  Google Scholar 

  11. M.J. Starink, A. Deschamps, and S.C. Wang, The Strength of Friction Stir Welded and Friction Stir Processed Aluminium Alloys, Scripta Mater., 2008, 58, p 377–382

    Article  CAS  Google Scholar 

  12. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scripta Mater., 1999, 41, p 809–815

    Article  CAS  Google Scholar 

  13. L. Fratini, G. Buffa, and R. Shivpuri, In-Process Heat Treatments to Improve FS-Welded Butt Joints, Int. J. Adv. Manuf. Technol., 2009, 43, p 664–670

    Article  Google Scholar 

  14. H.J. Liu, H.J. Zhang, and L. Yu, Homogeneity of Mechanical Properties of Underwater Friction Stir Welded 2219-T6 Aluminum Alloy, JMEPEG, doi:10.1007/s11665-010-9787-x

  15. A. Tolley, D. Mitlin, V. Radmilovic, and U. Dahmen, Transmission Electron Microscopy Analysis of Grain Boundary Precipitate-Free-Zones (PFZs) in an AlCuSiGe Alloy, Mater. Sci. Eng. A, 2005, 412, p 204–213

    Article  Google Scholar 

  16. B. Cai, B.L. Adams, and T.W. Nelson, Relation Between Precipitate-Free Zone Width and Grain Boundary Type in 7075-T7 Al Alloy, Acta Mater., 2007, 55, p 1543–1553

    Article  CAS  Google Scholar 

  17. G. Ran, J.E. Zhou, and Q.G. Wang, Precipitates and Tensile Fracture Mechanism in a Sand Cast A356 Aluminum Alloy, J. Mater. Process. Technol., 2008, 207, p 46–52

    Article  CAS  Google Scholar 

  18. G. Itoh, M. Kanno, T. Hagiwara, and T. Sakamoto, Embrittlement in an Age-Hardened 2091 Aluminum Alloy by Exposure at Elevated Temperatures Below the Aging Temperature, Acta Mater., 1999, 47, p 3799–3809

    Article  CAS  Google Scholar 

  19. M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstructure and Strengthening of Al-Li-Cu-Mg Alloys and MMCs: II. Modelling of Yield Strength, Acta Mater., 1999, 47, p 3855–3868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to be supported by the National Basic Research Program of China (973 Program, 2010CB731704) and by the National Science and Technology Major Project of China (302010ZX04007-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.J., Liu, H.J. & Yu, L. Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone. J. of Materi Eng and Perform 21, 1182–1187 (2012). https://doi.org/10.1007/s11665-011-0060-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0060-8

Keywords

Navigation