Skip to main content
Log in

Effect of Mo on the Precipitation Behavior of FB780 Steel with a High Hole-Expanding Ratio at Different Coiling Temperatures

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The investigations conducted on the effect of molybdenum (Mo) on the precipitation behavior of FB780 steel with the high hole-expanding ratio at different coiling temperatures have been limited. In the present study, base steel without the addition of Mo (Nb–Ti steel) and Nb–Ti–Mo steel with the addition of 0.191% (wt.%) Mo was prepared. Different coiling temperatures were selected on the basis of the process used in industrial production. The results indicated that Mo promoted precipitation at low coiling temperatures, while the volume fraction and size of the precipitates were increased and decreased, respectively, exerting a precipitation strengthening effect. The addition of Mo lowered the optimal coiling temperature, which would be beneficial in terms of energy saving. In addition, Mo reduced the row width of the interphase precipitation and improved the performance stability of the FB780 steel with high hole-expanding ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghosh M, Bart K, Das S K, Ravi Kumar B, Pramanick A K, Chakraborty J, Das G, Hadas S, Bharathy S, and Ray S K, Metall. Mater. Tran. A 45 (2014) 2719.

    Article  CAS  Google Scholar 

  2. Kim Y W, Song S, Seo S J, Hong S-G, and Lee C S, Mater. Sci. Eng. A 565 (2013) 430.

    Article  CAS  Google Scholar 

  3. Mao X, Huo X, Sun X, and Chai Y, J. Mater. Process Tech. 210 (2010) 1660.

    Article  CAS  Google Scholar 

  4. Leire G S, Beatriz L, and Beatriz P, Mater. Sci. Eng. A 748 (2019) 386.

    Article  Google Scholar 

  5. Iza-Mendia A, Altuna M A, Pereda B, and Gutiérrez I, Metall. Mater. Tran. A 43 (2012) 4553.

    Article  CAS  Google Scholar 

  6. Isasti N, Jorge−Badiola D, Taheri M L, and Uranga P, Metal. Mater. Int. 20 (2014) 807.

    Article  CAS  Google Scholar 

  7. Medina S F, Chapa M, Valles P, Quispe A, and Vega M I, ISIJ Int 39 (1999) 930.

    Article  CAS  Google Scholar 

  8. Lagneborg R, Siwecki T, Zajac S, and Hutchinson B, Scand. J. Metall 28 (1999) 186.

    CAS  Google Scholar 

  9. Freeman S, Honeycombe R W K. Metal Sci 11 (1977) 59.

    Article  CAS  Google Scholar 

  10. Uemori R, Chijiwa R, Tamehiro H, and Morikawa H, Appl. Surf. Sci 76-77 (1994) 255.

    Article  Google Scholar 

  11. Isasti N, Jorge-Badiola D, Taheri M L, López B, and Uranga P, Metall. Mater. Tran. A 42A (2011) 3729.

    Article  Google Scholar 

  12. Mao X P, Microalloying technology on thin slab casting and direct rolling process, Metallurgy Industry Press, Beijing (2008).

    Google Scholar 

  13. Isasti N, Jorge-Badiola D, Taheri M L, and Uranga P, Metall. Mater. Tran. A 45A (2014) 4960.

    Article  Google Scholar 

  14. Misra R D K, Nathani H, Hartmann J E, and Siciliano F, Mater. Sci. Eng. A 394 (2005) 339.

    Article  Google Scholar 

  15. Xu G, Gan X L, Ma G J, Luo F, and Zou H, Mater. Des 31 (2010) 2891.

    Article  CAS  Google Scholar 

  16. Gladman T. Mater. Sci. Tech 15 (1999) 30.

    Article  CAS  Google Scholar 

  17. Huang H H, Yang G W, Zhao G, Mao X, Gan X, Yin Q, and Yi H, Mater. Sci. Eng. A 736 (2018) 148.

    Article  CAS  Google Scholar 

  18. Zhang K, Li Z D, Sun X J, Yong Q L, Yang J W, Li Y M, and Zhao P L, Acta Metall. Sin 28 (2015) 641.

    Article  CAS  Google Scholar 

  19. Zhao X, Ji D P, Zhang M, Zhou X H, and Song J N, Mater. Mech. Eng. 2 (2017) 93. (In Chinese).

    Article  Google Scholar 

  20. Hong J F, Liu J L, Pang H J, and Wang G D, Metall. Anal. 1 (2016) 29. (In Chinese).

    Google Scholar 

  21. Kashima T, Hashimoto S, Mukai Y, JSAE Rev., 24 (2003) 81.

    Article  CAS  Google Scholar 

  22. Yang X Y, Lang L H, Liu K N, and Guo C, T. Nonferr. Metal. Soc 25 (2015) 3389.

    Article  CAS  Google Scholar 

  23. Avramovic−Cingara G, Ososkov Y, Jain M K, and Wilkinson D S, Mater. Sci. Eng. A 516 (2009) 7.

    Article  Google Scholar 

  24. Ghadbeigi H, Pinna C, Celotto S, and Yates J R, Mater. Sci. Eng. A 527 (2010) 5026.

    Article  Google Scholar 

  25. Zhao C, Jiang H T, Tang D, Zhao S S, and Cheng Z S, Mater. Heat Treat 20 (2008) 17.

    CAS  Google Scholar 

  26. Mohammad S M, Yoshiharu M, Mater. Sci. Eng. A 527 (2010) 2592.

    Article  Google Scholar 

  27. Guan M F, Yu H, Mater. Sci. Eng. A 559 (2013) 875.

    Article  CAS  Google Scholar 

  28. Zuo J Q, China Metal Bulletin 10 (2018) 3. (In Chinese).

    Google Scholar 

  29. Wang M, Liu B, Liu Y Q, Zhang Y, and Zhen R B, Res. Iron Steel. 4 (2016) 30. (In Chinese).

    CAS  Google Scholar 

  30. Yuan Q, Xu G, Liu S, Liu M, Hu H J, and Li G Q, Metals 8 (2018), 518.

    Article  Google Scholar 

  31. Yuan Q, Xu G, Liu M, Hu H J, and Tian J Y, Steel Res. Int. 2 (2019), https://doi.org/10.1002/srin.201800.

    Article  Google Scholar 

  32. Yuan Q, Xu G, Tian J Y, and Liang W C, Arab. J. Sci. Eng 42 (2017), 4771.

    Article  CAS  Google Scholar 

  33. Yuan Q, Xu G, Liu M, Liu S, and Hu H J, Trans. Indian Inst. Met. 72 (2019), 741.

    Article  CAS  Google Scholar 

  34. Yuan Q, Xu G, Liu S, Liu M, and Hu H J, Arch. Metall. Mater 63 (2018), 1805.

    CAS  Google Scholar 

  35. Gan X L, Yuan Q, Zhao G, Ma H W, Liang W, Xue Z L, Qiao W W, and Xu G, Metall. Mater. Trans. A 51 (2020) 2084.

    Article  Google Scholar 

  36. Gan X L, Yuan Q, Zhao G, Hu H J, Tian J Y, and Xu G, Steel Res. Int 90 (2019), https://doi.org/10.1002/srin.201900040.

    Article  Google Scholar 

  37. Cahn J W, Acta Metall 5 (1957) 168.

    Article  Google Scholar 

  38. Yong Q L, Microalloyed steels physical and mechanical metallurgy, China Machine Press, Beijing (1989).

    Google Scholar 

  39. Zhu M, Xu G, Zhou M X, and Hu H J, J. Univers. Sci. Technol. Wuhan 34 (2019) 692.

    Article  CAS  Google Scholar 

  40. Yang H L, Xu G, Wang L, Yuan Q, and He B, Met. Sci. Heat Treat. 59 (2017) 8.

    Article  CAS  Google Scholar 

  41. Bhadeshia H K D, Physica Status Solidi 69 (1982) 745.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Postdoctoral Innovative Research Post of Hubei Province, the Post-doctoral Research Funding Program of Jiangsu Province, the National Natural Science Foundation of China (NSFC) (No. 51874216) and The Major Projects of Technology Innovation of Hubei Province (2017AAA116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Yuan, Q., Liu, S. et al. Effect of Mo on the Precipitation Behavior of FB780 Steel with a High Hole-Expanding Ratio at Different Coiling Temperatures. Trans Indian Inst Met 73, 2817–2827 (2020). https://doi.org/10.1007/s12666-020-02066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02066-9

Keywords

Navigation