Skip to main content

Advertisement

Log in

Correlation of Tensile Properties and Fracture Toughness with Microstructural Features for Al–Li 8090 Alloy Processed by Cryorolling and Post-rolled Annealing

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The influence of cryorolling and post-deformation annealing on the tensile and fracture behaviour of aluminium–lithium (Al 8090) alloy is reported in the present investigation. The solution-treated (ST) alloy was cryorolled (CR) up to the true strain of 2.3 to achieve ultrafine-grained (UFG) microstructure and then annealed at different temperature ranging from 100 to 350 °C. CR samples showed a significant increase in tensile strength (~ 373 MPa), hardness (~ 120 HV), and fracture toughness [KQ (21.9 MPa \( \surd m \)), Kee [27.9 MPa \( \surd m \)), J integral (21.8 kJ/m2)], while huge drop in ductility of CR alloy is observed as compared to coarser grain ST alloy. After annealing in the temperature ranging from 100 to 350 °C, the significant changes in the tensile and fracture behaviour of bulk UFG Al 8090 alloy were noticed. The tensile strength and fracture toughness were gradually improved up to the temperature 150 °C and observed to be maximum (~ 561 MPa) at 150 °C, while beyond this temperature, a significant drop in these properties was observed. The improved tensile and fracture properties of cryorolled followed by annealed alloy at 150 °C could be attributed to the precipitation of S′ (Al2CuMg) and \( \delta \) (Al3Li) phase as observed from XRD and TEM studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M S H, Sharma S, and Kumar B, Rev Sev Plast Deform 6 (2017) 66.

  2. Hussain M, Nageswara P, Singh D, Jayaganthan R, and Singh S, Procedia Eng 75 (2014) 129. https://doi.org/10.1016/j.proeng.2013.11.028.

    Article  Google Scholar 

  3. Kapoor R, Sarkar A, Yogi R, Shekhawat S K, Samajdar I, and Chakravartty J K, Mater Sci Eng A 560 (2013) 404. https://doi.org/10.1016/j.msea.2012.09.085.

    Article  Google Scholar 

  4. Chatterjee A, Sharma G, Sarkar A, Singh J B, and Chakravartty J K, Mater Sci Eng A 556 (2012) 653. https://doi.org/10.1016/j.msea.2012.07.043.

    Article  Google Scholar 

  5. Chen Y C, Huang Y Y, Chang C P, and Kao P W, Acta Mater 51 (2003) 2005. https://doi.org/10.1016/s1359-6454(02)00607-9.

    Article  Google Scholar 

  6. Alhamidi A, and Horita Z, Grain Refinement and High Strain Rate Superplasticity in Alumunium 2024 Alloy Processed by High-Pressure Torsion, Elsevier (2015). https://doi.org/10.1016/j.msea.2014.11.009.

  7. Horita Z, and Langdon T G, Mater Sci Eng A 410–411 (2005). https://doi.org/10.1016/j.msea.2005.08.133.

    Article  Google Scholar 

  8. Tsuji N, Saito Y, Lee S H, and Minamino Y, Adv Eng Mater 5 (2003) 338. https://doi.org/10.1002/adem.200310077.

    Article  Google Scholar 

  9. Rajinikanth V, Arora G, Narasaiah N, and Venkateswarlu K, Mater Lett 62 (2008) 301. https://doi.org/10.1016/j.matlet.2007.05.014.

  10. Rao P N, Singh D, Jayaganthan R, Rao P N, Singh D, and Jayaganthan R, Mater Sci Technol 0836 (2013). https://doi.org/10.1179/1743284712y.0000000041.

  11. Joshi A, Yogeshak K, and Jayaganthan R, Mater Charact (2017) 253–271. https://doi.org/10.1016/j.matchar.2017.02.003.

  12. Kumar N, Rao P N, Jayaganthan R, and Brokmeier H, Mater Chem Phys 165 (2015) 177. https://doi.org/10.1016/j.matchemphys.2015.09.014.

    Article  Google Scholar 

  13. Singh D, Rao P N, and Jayaganthan R, Int J Miner Metall Mater, 20 (2013) 759–769. https://doi.org/10.1007/s12613-013-0794-4.

  14. Rangaraju N, Raghuram T, Krishna B V, Rao K P, and Venugopal P, Mater Sci Eng A (2005). https://doi.org/10.1016/j.msea.2005.03.026.

  15. Krishna K S V B R, Chandra Sekhar K, Tejas R, Naga Krishna N, Sivaprasad K, Narayanasamy R, and Venkateswarlu K, Mater Des 67 (2015) 107. https://doi.org/10.1016/j.matdes.2014.11.022.

  16. Panigrahi S K, and Jayaganthan R, Mater Sci Eng A 480 (2008) 299. https://doi.org/10.1016/j.msea.2007.07.024.

    Article  Google Scholar 

  17. Joshi A, Nikhil K K Y, Jayaganthan K R, and Jayaganthan R, Metallogr Microstruct Anal 5 (2016) 540. https://doi.org/10.1007/s13632-016-0313-x.

    Article  Google Scholar 

  18. Prasad N E, Gokhale A A, and Wanhill R J H, Butterworth Heinemann. (2014) 1289. https://doi.org/10.1201/9780203912607.

  19. Llorca Isern N, Gonzalez P A, Luis Pérez C J, and Laborde I, Mater Sci Forum 503–504 (2006) 871. doi:10.4028/www.scientific.net/MSF.503-504.871.

  20. Prasad N E, Gokhale A A, and Rao P R, Sadhana 28 (2003) 209. https://doi.org/10.1007/bf02717134.

    Article  Google Scholar 

  21. Gregson P J, and Flower H M, Acta Metall 33 (1985) 527. https://doi.org/10.1016/0001-6160(85)90095-1.

    Article  Google Scholar 

  22. Liu S M, and Wang Z G, Scr Mater 48 (2003) 1421. https://doi.org/10.1016/s1359-6462(03)00107-6.

    Article  Google Scholar 

  23. Maria Rodrigues E, Matias A, Barbosa L, and Mg O P, Mater Res, 8 (2005) 287. https://doi.org/10.1590/s1516-14392005000300011.

    Google Scholar 

  24. Nikhil K K Y, and Amit K, Metallogr Microstruct Anal 5 (2016) 251. https://doi.org/10.1007/s13632-016-0282-0.

    Article  Google Scholar 

  25. Boukos N, Rocofyllou E, and Papastaikoudis C, Mater Sci Eng A 256 (1998) 280. https://doi.org/10.1016/s0921-5093(98)00794-1.

    Article  Google Scholar 

  26. Ghosh K S, Das K, and Chatterjee U K, Mater Sci Technol 20 (2004) 825. https://doi.org/10.1179/026708304225019650.

    Article  Google Scholar 

  27. Ghosh K S, Das K, and Chatterjee U K, J Appl Electrochem 36 (2006) 1057. https://doi.org/10.1007/s10800-006-9166-3.

    Article  Google Scholar 

  28. Dhal A, Panigrahi S K, and Shunmugam M S, Mater Sci Eng A 645 (2015) 383. https://doi.org/10.1016/j.msea.2015.08.020.

  29. Nageswara P, and Jayaganthan R, Mater Des 39 (2012) 226. https://doi.org/10.1016/j.matdes.2012.02.010.

    Article  Google Scholar 

  30. Wang Y M, Chen M W, Zhou F H, and Ma E, Nature. 419 (2002) 912. https://doi.org/10.1038/nature01133.

    Article  Google Scholar 

  31. Shanmugasundaram T, Heilmaier M, Murty B S, and Sarma V S, Mater Sci Eng A 527 (2010) 7821. https://doi.org/10.1016/j.msea.2010.08.070.

    Article  Google Scholar 

  32. Hohenwarter A, and Pippan R, Mater Sci Eng A 540 (2012) 89. https://doi.org/10.1016/j.msea.2012.01.089.

    Article  Google Scholar 

  33. Hohenwarter A, and Pippan R, Scr Mater 64 (2011) 982. https://doi.org/10.1016/j.scriptamat.2011.02.007.

    Article  Google Scholar 

  34. Hahn G T, and Rosenfield A R, Metall Trans A 6 (1975) 653. https://doi.org/10.1007/bf02672285.

    Article  Google Scholar 

  35. B. Farahmand, and M. Aliabadi, Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints: Application of LEFM, EPFM, and FMDM Theory (2002). https://doi.org/10.1115/1.1483354.

  36. Joshi A, Kumar N, Yogesha K K, Jayaganthan R, and Nath S K, J Mater Eng Perform 25 (2016) 3031. https://doi.org/10.1007/s11665-016-2126-0.

  37. Dieter G E, Bacon D, and Wilkes G L, Metallurgy SI Metric Edition Adapted by, (n.d.T/AL).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gairola, S., Joshi, A., Gangil, B. et al. Correlation of Tensile Properties and Fracture Toughness with Microstructural Features for Al–Li 8090 Alloy Processed by Cryorolling and Post-rolled Annealing. Trans Indian Inst Met 72, 1743–1755 (2019). https://doi.org/10.1007/s12666-019-01641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01641-z

Keywords

Navigation