Skip to main content
Log in

Influence of B4C Particle Size on the Synthesis of ZrB2 by Boro/Carbothermal Reduction Method

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

ZrB2 powders were synthesized using B4C of different particle sizes through boro/carbo thermal reduction (BCTR) of ZrO2 with B4C and carbon as reducing agents. The XRD patterns of all the five different powders produced were similar and showed ZrB2 as a major phase. An increase in B4C particle size showed a significant increase in oxygen and carbon content and the size of agglomerates of the synthesized powders. Even though, the average size of the ZrB2 particles associated with all the agglomerates were same. It was concluded that B4C of fine particle size is necessary for the synthesis of ZrB2 powder with low oxygen and carbon content and lower agglomerates sizes. The synthesis route also provided a novel route to synthesize ZrB2 powder with the required size of agglomerates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cutler R A, Engineering Properties of Borides, ASM International, Materials Park (1991).

    Google Scholar 

  2. Shaffer P T B, Ceramics and Glasses, Engineered Materials Handbook, Jr. ASM International, Materials Park (1991).

    Google Scholar 

  3. Guo S Q, J Eur Ceram Soc 29 (2009) 995.

    Article  Google Scholar 

  4. Upadhya K, Yang J M, and Hoffmann W P, Am Ceram Soc Bull 76 (1997) 51.

  5. Monteverde F, Guicciardi S, and Bellosi A, Mater Sci Eng A 346 (2003) 310.

    Article  Google Scholar 

  6. Chamberlain A L, Fahrenholtz W G, Hilmas G E, and Ellerby D T, J Am Ceram Soc 87 (2004) 1170.

    Article  Google Scholar 

  7. Zhang S C, Hilmas G E, and Fahrenholtz W G, J Am Ceram Soc 91 (2008) 26.

    Article  Google Scholar 

  8. Eakins E, Jayaseelan D D, and Lee W E, Metall Mater Trans A Phys Metall Mater Sci 42 (2011) 878.

    Article  Google Scholar 

  9. FahrenholtzW G, Hilmas G E, Talmy I G, and Zaykoski J A, J Am Ceram Soc 90 (2007) 1347.

    Article  Google Scholar 

  10. Rangaraj L, Divakar C, and Jayaram V, J Eur Ceram Soc 30 (2010) 129.

    Article  Google Scholar 

  11. Jung E Y, Kim J H, Jung S H, and Choi S C, J Alloys Compd 538 (2012) 164.

    Article  Google Scholar 

  12. Patel M, Singh V, Reddy J J, Bhanu Prasad V V, and Jayaram V, Scr Mater 69 (2013) 370.

    Article  Google Scholar 

  13. Yan Y, Huang Z, Dong S, and Jiang D, J Am Ceram Soc 89 (2006) 3585.

    Article  Google Scholar 

  14. Zou J, Zhang G J, Vleugels J, and Van der Biest O, J Eur Ceram Soc 33 (2013) 1609.

    Article  Google Scholar 

  15. Ran S, Van Der Biest O, and Vleugels J, J Am Ceram Soc 93 (2010) 1586.

    Google Scholar 

  16. Guo W M, and Zhang G J, J Am Ceram Soc 92 (2009) 264.

    Article  Google Scholar 

  17.  Zhao H, He Y, and Jin Z, J. Am Ceram Soc, 78 (1995) 2534.

  18. Su K, and Sneddon L G, Chem Mater 5 (1993), 1659.

    Article  Google Scholar 

  19. Yan C, Liu R, Zhang C, Cao Y, and Long X, RSC Adv, 5 (2015), 78606.

    Article  Google Scholar 

  20. Qiu H Y, Guo W M, Zou J, Zhang G J, Powder Technol 217 (2012) 462.

    Article  Google Scholar 

  21. Yang B, Li J, Zhao B, Hu Y, Wang T, Sun D, Li R, Yin S, Feng Z, Tang Q, and Sato T, Powder Technol, 256, (2014) 522.

    Article  Google Scholar 

  22. Zhang L, Min G H, Yu H S, Chen H M, Feng G, Key Eng Mater 326–328 (2006) 369.

    Article  Google Scholar 

  23. Matkovich V I (ed), Boron and Refractory Borides (1997), p 319.

  24. Rahaman M N, Ceramic Processing and sintering, New York, Marcel Dekkar, Inc., (1995).

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support received from DRDO, Govt. of India in order to carry out the present research study. We are also thankful to N. D. VaraPrasad, J. Vimala S. Venkat, and K. R. Iyanger, for their valuable support in the characterisation of the ZrB2 powder samples. We are grateful to the Director, Defence Metallurgical Research Laboratory (DMRL), Hyderabad for giving permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. N. Murthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, S.S.N., Patel, M., Reddy, J.J. et al. Influence of B4C Particle Size on the Synthesis of ZrB2 by Boro/Carbothermal Reduction Method. Trans Indian Inst Met 71, 57–65 (2018). https://doi.org/10.1007/s12666-017-1155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1155-1

Keywords

Navigation