Skip to main content
Log in

Flame spray synthesis of nano lanthanum strontium manganite for solid oxide fuel cell applications

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Lanthanum strontium manganite is a classic cathode material for solid oxide fuel cells (SOFC). Nanosized LSM particles, due to their higher specfic surface area, have been found to enhance the electrode performance by providing a larger three phase boundary (TPB) area. However conventional processes like solid state, sol-gel or co-precipitation, produce particles having low specic surface area (< 8 m2/g) and hence require high sintering temperatures. Moreover these processes are multi-step and are hence time consuming. In the present work, single phase LSM with a crystallite size of 26 nm and a specfic surface area as high as 40 m2/g was produced by a flame spray pyrolysis method. The as-synthesized powder was characterized by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Porous thin films were prepared by spin coating a water based dispersion of LSM. Electrochemical performance of the nanoparticulate cathode films were studied using impedance spectroscopy. Interfacial polarization resistance value of as low as 0.085 Ωcm 2 at 850°C was obtained by this method. This method thus offers a very cost effective approach for the preparation of highly active cathode thin films for SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minh N Q, Journal of the American Ceramic Society, 76(3) (1993) 563.

    Article  CAS  Google Scholar 

  2. Steele B C H and Heinzel A, Nature 414(6861) (2001) 345.

    Article  CAS  Google Scholar 

  3. Liang F, Chen J, Jiang S P, Chi B, Pu J and Jian L, Electrochemistry Communications, 11(5) (2009) 1048.

    Article  CAS  Google Scholar 

  4. Darbandi A J, Enz T and Hahn H, Solid State Ionics, 180(4–5) (2009) 424.

    Article  CAS  Google Scholar 

  5. Darbandi A J and Hahn H, Solid State Ionics, 180(26–27) (2009) 1379.

    Article  CAS  Google Scholar 

  6. Bell R J, Millar G J and Drennan J, Solid State Ionics, 131(3–4) (2000) 211.

    Article  CAS  Google Scholar 

  7. Brant M C, Zani J A and Lameiras F S, Materials Science Forum, 498–499 (2005) 630.

    Article  Google Scholar 

  8. Gaudon M, Laberty-Robert C, Ansart F, Stevens P and Rousset A, Solid State Sciences, 4(1) (2002) 125.

    Article  CAS  Google Scholar 

  9. Pratsinis S E, Progress in Energy and Combustion Science, 24(3) (1998) 197.

    Article  CAS  Google Scholar 

  10. Mueller R, Madler L and Pratsinis S E, Chemical Engineering Science, 58(10) (2003) 1969.

    Article  CAS  Google Scholar 

  11. Heel A, Holtappels P and Graule T, Journal of Power Sources, 195(19) (2010) 6709.

    Article  CAS  Google Scholar 

  12. Heel A, Holtappels P, Hug P and Graule T, Fuel Cells, 10(3) (2010) 419.

    Article  CAS  Google Scholar 

  13. Charojrochkul S, Choy K L and Steele B C H, Journal of the European Ceramic Society, 24(8) (2004) 2515.

    Article  CAS  Google Scholar 

  14. Brunauer S, Emmett P H and Teller E, Journal of the American Chemical Society, 60(2) (1938) 309.

    Article  CAS  Google Scholar 

  15. Labrincha J A, Frade J R and Marques F M B, Journal of Materials Science, 28(14) (1993) 3809.

    Article  CAS  Google Scholar 

  16. Brugnoni C, Ducati U and Scagliotti M, Solid State Ionics, 76(3–4) (1995) 177.

    Article  CAS  Google Scholar 

  17. Mitterdorfer A and Gauckler L J, Solid State Ionics, 111(3–4) (1998) 185.

    Article  CAS  Google Scholar 

  18. Tsoncheva T, Rosenholm J, Teixeira C V, Dimitrov M, Linden M, Minchev C, Microporous and Mesoporous Materials, 89(1–3) (2006) 209.

    Article  CAS  Google Scholar 

  19. Gnanasekar K, Jiang X, Jiang J, Aghasyan M, Tiltsworth R, Hormes J, Rambabu B, Solid State Ionics, 148 (2002) 575.

    Article  CAS  Google Scholar 

  20. Vazquez C V, Quintela M A L, Journal of Solid State Chemistry, 179 (2006) 3229.

    Article  Google Scholar 

  21. Kawagoe Y, Namie S, Nomura M, Kumakura T, Shiozaki K, Nakajima Y, U. Stimming, S. Singhal, H. Tagawa, W. Lehnert (Eds.), Solid oxide fuel cells V, The Electrochemical Society, Pennington, (1997) 549.

    Google Scholar 

  22. Mizusaki J, Tagawa H, Tsuneyoshi K and Sawata A, Journal of The Electrochemical Society, 138(7) (1991) 1867.

    Article  CAS  Google Scholar 

  23. Antunes R, Golec T, Miller M, Kluczowski R, Krauz M and Krzastek K, Journal of Fuel Cell Science and Technology, 7 (2010).

  24. Murray E P, Tsai T Barnett S A, Solid State Ionics, 110(3–4) (1998) 235.

    Article  CAS  Google Scholar 

  25. Jiang S, Journal of Materials Science, 43(21) (2008) 6799.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu J. Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, D.J., Darbandi, A.J., Suffner, J. et al. Flame spray synthesis of nano lanthanum strontium manganite for solid oxide fuel cell applications. Trans Indian Inst Met 64, 181 (2011). https://doi.org/10.1007/s12666-011-0035-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0035-3

Keywords

Navigation