Skip to main content
Log in

Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-temperature solid oxide fuel cell (SOFC) is the most efficient and environmentally friendly energy conversion technology to generate electricity from fuels such as hydrogen and natural gas as compared to the traditional thermal power generation plants. In the last 20–30 years, there has been significant progress in the materials development and stack technologies in SOFC. Among the electrode materials, lanthanum strontium manganite (LSM) perovskites, till today, are the most investigated and probably the most important electrode materials in SOFCs. The objective of this article is to review and update the development, understanding, and achievements of the LSM-based materials in SOFC. The structure, nonstoichiometry, defect model, and in particular the relation between the microstructure, their properties (electrical, thermal, mechanical, chemical, and interfacial), and electrochemical performance and performance stability are critically reviewed. Finally, challenges and prospects of LSM-based materials as cathodes for intermediate and low-temperature SOFCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME (2005) Mater Res Soc Bull 30:591

    CAS  Google Scholar 

  2. Jiang SP, Chan SH (2004) J Mater Sci 39:4405. doi:https://doi.org/10.1023/B:JMSC.0000034135.52164.6b

    CAS  Google Scholar 

  3. Gorte RJ, Vohs JM, McIntosh S (2004) Solid State Ionics 175:1. doi:https://doi.org/10.1016/j.ssi.2004.09.036

    CAS  Google Scholar 

  4. Adler SB (2004) Chem Rev 104:4791. doi:https://doi.org/10.1021/cr020724o

    CAS  Google Scholar 

  5. Fergus JW (2005) Mater Sci Eng A Struct Mater Prop Microstruct Process 397:271

    Google Scholar 

  6. De Jonghe LC, Jacobson CP, Visco SJ (2003) Annu Rev Mater Res 33:169. doi:https://doi.org/10.1146/annurev.matsci.33.041202.103842

    Google Scholar 

  7. Ivers-Tiffee E, Weber A, Herbstritt D (2001) J Eur Ceram Soc 21:1805. doi:https://doi.org/10.1016/S0955-2219(01)00120-0

    CAS  Google Scholar 

  8. Tofield BC, Scott WR (1974) J Solid State Chem 10:183. doi:https://doi.org/10.1016/0022-4596(74)90025-5

    CAS  Google Scholar 

  9. Hammouche A, Siebert E, Hammou A (1989) Mater Res Bull 24:367. doi:https://doi.org/10.1016/0025-5408(89)90223-7

    CAS  Google Scholar 

  10. Shannon RD (1976) Acta Crystallogr A 32:751. doi:https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  11. Li Z, Behruzi M, Fuerst L, Stover D (1993) In: Singhal SC, Iwahara H (eds) SOFC-III. The Electrochemical Society, Inc., Pennington. p 171

  12. Zhang ZT, Lin OY, Tang ZL (1995) In: Dokiya M, Tagawa H, Singhal SC (eds) SOFC-IV. The Electrochemical Society, Pennington, p 502

  13. Zheng F, Pederson LR (1999) J Electrochem Soc 146:2810. doi:https://doi.org/10.1149/1.1392012

    CAS  Google Scholar 

  14. Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE et al (1999) Solid State Ionics 121:1. doi:https://doi.org/10.1016/S0167-2738(98)00295-1

    CAS  Google Scholar 

  15. Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ionics 49:111. doi:https://doi.org/10.1016/0167-2738(91)90076-N

    CAS  Google Scholar 

  16. Mizusaki J (1992) Solid State Ionics 52:79. doi:https://doi.org/10.1016/0167-2738(92)90093-5

    CAS  Google Scholar 

  17. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H et al (2000) Solid State Ionics 129:163. doi:https://doi.org/10.1016/S0167-2738(99)00323-9

    CAS  Google Scholar 

  18. Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H et al (2000) Solid State Ionics 132:167. doi:https://doi.org/10.1016/S0167-2738(00)00662-7

    CAS  Google Scholar 

  19. Miyoshi S, Hong JO, Yashiro K, Kaimai A, Nigara Y, Kawamura K et al (2002) Solid State Ionics 154:257. doi:https://doi.org/10.1016/S0167-2738(02)00441-1

    Google Scholar 

  20. van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) J Solid State Chem 110:100. doi:https://doi.org/10.1006/jssc.1994.1141

    Google Scholar 

  21. Mitchell JF, Argyriou DN, Potter CD, Hinks DG, Jorgensen JD, Bader SD (1996) Phys Rev B 54:6172. doi:https://doi.org/10.1103/PhysRevB.54.6172

    CAS  Google Scholar 

  22. Alonso JA, Martinez-Lope MJ, Casais MT, MacManus-Driscoll JL, de Silva P, Cohen LF, Fernandez Diaz MT (1997) J Mater Chem 7:2139. doi:https://doi.org/10.1039/a704088a

    CAS  Google Scholar 

  23. Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67

    CAS  Google Scholar 

  24. Huang Q, Santoro A, Lynn JW, Erwin RW, Borchers JA, Peng JL et al (1997) Phys Rev B 55:14987. doi:https://doi.org/10.1103/PhysRevB.55.14987

    CAS  Google Scholar 

  25. De Souza RA, Islam MS, Ivers-Tiffee E (1999) J Mater Chem 9:1621. doi:https://doi.org/10.1039/a901512d

    Google Scholar 

  26. van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:109. doi:https://doi.org/10.1006/jssc.1994.1143

    Google Scholar 

  27. van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:113. doi:https://doi.org/10.1006/jssc.1994.1144

    Google Scholar 

  28. van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:106. doi:https://doi.org/10.1006/jssc.1994.1142

    Google Scholar 

  29. Nakamura K, Xu MX, Klaser M, Linker G (2001) J Solid State Chem 156:143. doi:https://doi.org/10.1006/jssc.2000.8974

    CAS  Google Scholar 

  30. Nakamura K, Ogawa K (2002) J Solid State Chem 163:65. doi:https://doi.org/10.1006/jssc.2001.9370

    CAS  Google Scholar 

  31. Alonso JA, MartinezLope MJ, Casais MT (1996) Eur J Solid State Inorg Chem 33:331

    CAS  Google Scholar 

  32. Miyoshi S, Hong JO, Yashiro K, Kaimai A, Nigara Y, Kawamura K et al (2003) Solid State Ionics 161:209. doi:https://doi.org/10.1016/S0167-2738(03)00281-9

    CAS  Google Scholar 

  33. Kuo JH, Anderson HU, Sparlin DM (1989) J Solid State Chem 83:52. doi:https://doi.org/10.1016/0022-4596(89)90053-4

    CAS  Google Scholar 

  34. Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55. doi:https://doi.org/10.1016/0022-4596(90)90064-5

    CAS  Google Scholar 

  35. Kamata H, Yonemura Y, Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1995) J Phys Chem Solids 56:943. doi:https://doi.org/10.1016/0022-3697(95)00019-4

    CAS  Google Scholar 

  36. Yasumoto K, Shiono M, Tagawa H, Dokiya M, Hirano K, Mizusaki J (2002) J Electrochem Soc 149:A531. doi:https://doi.org/10.1149/1.1463400

    CAS  Google Scholar 

  37. Yasumoto K, Mori N, Mizusaki J, Tagawa H, Dokiya M (2001) J Electrochem Soc 148:A105. doi:https://doi.org/10.1149/1.1344524

    CAS  Google Scholar 

  38. Lee HY, Cho WS, Oh SM, Wiemhofer HD, Gopel W (1995) J Electrochem Soc 142:2659. doi:https://doi.org/10.1149/1.2050070

    CAS  Google Scholar 

  39. Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) J Electrochem Soc 138:1212. doi:https://doi.org/10.1149/1.2085761

    CAS  Google Scholar 

  40. Chen XJ, Chan SH, Khor KA (2004) Electrochem Solid-State Lett 7:A144. doi:https://doi.org/10.1149/1.1701584

    CAS  Google Scholar 

  41. Wang W, Jiang SP (2006) Solid State Ionics 177:1361. doi:https://doi.org/10.1016/j.ssi.2006.05.022

    CAS  Google Scholar 

  42. Jiang SP, Love JG (2001) Solid State Ionics 138:183. doi:https://doi.org/10.1016/S0167-2738(00)00806-7

    CAS  Google Scholar 

  43. Caillol N, Pijolat M, Siebert E (2007) Appl Surf Sci 253:4641. doi:https://doi.org/10.1016/j.apsusc.2006.10.019

    CAS  Google Scholar 

  44. Wu QH, Liu ML, Jaegermann W (2005) Mater Lett 59:1980. doi:https://doi.org/10.1016/j.matlet.2005.01.038

    CAS  Google Scholar 

  45. Egdell RG, Harrison MR, Hill MD, Porte L, Wall G (1984) J Phys C Solid State Phys 17:2889. doi:https://doi.org/10.1088/0022-3719/17/16/008

    CAS  Google Scholar 

  46. Kemp JP, Beal DJ, Cox PA (1990) J Solid State Chem 86:50. doi:https://doi.org/10.1016/0022-4596(90)90112-B

    CAS  Google Scholar 

  47. Howlett JF, Flavell WR, Thomas AG, Hollingworth J, Warren S, Hashim Z et al (1996) Faraday Discuss 105:337. doi:https://doi.org/10.1039/fd9960500337

    CAS  Google Scholar 

  48. Jiang SP (2006) J Solid State Electrochem 11:93. doi:https://doi.org/10.1007/s10008-005-0076-9

    CAS  Google Scholar 

  49. Hammouche A, Schouler EJL, Henault M (1988) Solid State Ionics 28:1205. doi:https://doi.org/10.1016/0167-2738(88)90358-X

    Google Scholar 

  50. Yokokawa H, Sakai N, Kawada T, Dokiya M (1990) Solid State Ionics 40–41:398. doi:https://doi.org/10.1016/0167-2738(90)90366-Y

    Google Scholar 

  51. Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M et al (1991) J Electrochem Soc 138:1519. doi:https://doi.org/10.1149/1.2085819

    CAS  Google Scholar 

  52. Mattiot FP, Giunta G, Selvaggi A (1994) In: Uossel U (ed) First European SOFC forum. European Fuel Cell Group, Ltd, Lucerne, p 735

  53. Jiang SP, Love JG, Apateanu L (2003) Solid State Ionics 160:15. doi:https://doi.org/10.1016/S0167-2738(03)00127-9

    CAS  Google Scholar 

  54. Aruna ST, Muthuraman M, Patil KC (1997) J Mater Chem 7:2499. doi:https://doi.org/10.1039/a703901h

    CAS  Google Scholar 

  55. Mori M, Hiei Y, Sammes NM, Tompsett GA (1999) In: Singhal S, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Pennington, p 347

  56. Anderson HU (1992) Solid State Ionics 52:33. doi:https://doi.org/10.1016/0167-2738(92)90089-8

    CAS  Google Scholar 

  57. Minh NQ (1993) J Am Ceram Soc 76:563. doi:https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

    CAS  Google Scholar 

  58. Berenov A, Wood H, Atkinson A (2007) ECS Trans 7:1173. doi:https://doi.org/10.1149/1.2729216

    Google Scholar 

  59. Kuharuangrong S, Dechakupt T, Aungkavattana P (2004) Mater Lett 58:1964. doi:https://doi.org/10.1016/j.matlet.2003.12.011

    CAS  Google Scholar 

  60. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M et al (1999) Solid State Ionics 118:187. doi:https://doi.org/10.1016/S0167-2738(98)00440-8

    CAS  Google Scholar 

  61. Kostogloudis GC, Ftikos C (1999) J Eur Ceram Soc 19:497. doi:https://doi.org/10.1016/S0955-2219(98)00221-0

    CAS  Google Scholar 

  62. Rim HR, Jeung SK, Jung E, Lee JS (1998) Mater Chem Phys 52:54. doi:https://doi.org/10.1016/S0254-0584(98)80006-0

    CAS  Google Scholar 

  63. Kostogloudis GC, Vasilakos N, Ftikos C (1997) J Eur Ceram Soc 17:1513. doi:https://doi.org/10.1016/S0955-2219(97)00038-1

    CAS  Google Scholar 

  64. Yoon HS, Choi SW, Lee D, Kim BH (2001) J Power Sources 93:1. doi:https://doi.org/10.1016/S0378-7753(00)00504-8

    CAS  Google Scholar 

  65. Phillipps MB, Sammes NM, Yamamoto O (1999) Solid State Ionics 123:131. doi:https://doi.org/10.1016/S0167-2738(99)00082-X

    CAS  Google Scholar 

  66. Hashimoto S, Iwahara H (2000) J Electroceram 4:225. doi:https://doi.org/10.1023/A:1009936515152

    CAS  Google Scholar 

  67. Wandekar RV, Wani BN, Bharadwaj SR (2005) Mater Lett 59:2799. doi:https://doi.org/10.1016/j.matlet.2005.03.062

    CAS  Google Scholar 

  68. Kuharuangrong S (2004) Ceram Int 30:273. doi:https://doi.org/10.1016/S0272-8842(03)00099-3

    CAS  Google Scholar 

  69. Moure C, Gutierrez D, Tartaj J, Duran P (2003) J Eur Ceram Soc 23:729. doi:https://doi.org/10.1016/S0955-2219(02)00165-6

    CAS  Google Scholar 

  70. Nasrallah MM, Carter JD, Anderson HU, Koc R (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC-II. Commission of the European Communities, Luxemburg, p 637

  71. Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J (2008) J Power Sources 176:82

    CAS  Google Scholar 

  72. Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K et al (2001) Solid State Ionics 143:379. doi:https://doi.org/10.1016/S0167-2738(01)00877-3

    CAS  Google Scholar 

  73. Ji Y, Kilner JA, Carolan MF (2005) Solid State Ionics 176:937. doi:https://doi.org/10.1016/j.ssi.2004.11.019

    CAS  Google Scholar 

  74. Yang CCT, Wei WCJ, Roosen A (2003) Mater Chem Phys 81:134. doi:https://doi.org/10.1016/S0254-0584(03)00158-5

    CAS  Google Scholar 

  75. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597. doi:https://doi.org/10.1016/0167-2738(92)90435-R

    Google Scholar 

  76. De Souza RA, Kilner JA, Walker JF (2000) Mater Lett 43:43. doi:https://doi.org/10.1016/S0167-577X(99)00228-1

    Google Scholar 

  77. Berenov AV, MacManus-Driscoll JL, Kilner JA (1999) Solid State Ionics 122:41. doi:https://doi.org/10.1016/S0167-2738(99)00077-6

    CAS  Google Scholar 

  78. Horita T, Tsunoda T, Yamaji K, Sakai N, Kato T, Yokokawa H (2002) Solid State Ionics 152:439. doi:https://doi.org/10.1016/S0167-2738(02)00367-3

    Google Scholar 

  79. Horita T, Yamaji K, Ishikawa M, Sakai N, Yokokawa H, Kawada T et al (1998) J Electrochem Soc 145:3196. doi:https://doi.org/10.1149/1.1838786

    CAS  Google Scholar 

  80. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 86–88:1197. doi:https://doi.org/10.1016/0167-2738(96)00287-1

    Google Scholar 

  81. Yamahara K, Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:1359. doi:https://doi.org/10.1016/j.ssi.2005.03.010

    CAS  Google Scholar 

  82. Belzner A, Gur TM, Huggins RA (1992) Solid State Ionics 57:327. doi:https://doi.org/10.1016/0167-2738(92)90166-M

    CAS  Google Scholar 

  83. Lade K, Jacobsen T (1994) Solid State Ionics 72:218. doi:https://doi.org/10.1016/0167-2738(94)90150-3

    CAS  Google Scholar 

  84. Badwal SPS, Jiang SP, Love J, Nowotny J, Rekas M, Vance ER (2001) Ceram Int 27:431. doi:https://doi.org/10.1016/S0272-8842(00)00098-5

    CAS  Google Scholar 

  85. Badwal SPS, Jiang SP, Love J, Nowotny J, Rekas M, Vance ER (2001) Ceram Int 27:419. doi:https://doi.org/10.1016/S0272-8842(00)00097-3

    CAS  Google Scholar 

  86. Kopp A, Nafe H, Weppner W (1992) Solid State Ionics 53–56:853. doi:https://doi.org/10.1016/0167-2738(92)90265-Q

    Google Scholar 

  87. Endo A, Ihara M, Komiyama H, Yamada K (1996) Solid State Ionics 86–88:1191. doi:https://doi.org/10.1016/0167-2738(96)00286-X

    Google Scholar 

  88. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79. doi:https://doi.org/10.1016/S0167-2738(00)00770-0

    CAS  Google Scholar 

  89. Godoi GS, de Souza DPF (2007) Mater Sci Eng B Solid State Mater Adv Technol 140:90

    CAS  Google Scholar 

  90. Jiang SP (2002) Solid State Ionics 146:1. doi:https://doi.org/10.1016/S0167-2738(01)00997-3

    CAS  Google Scholar 

  91. Meixner DL, Cutler RA (2002) Solid State Ionics 146:273. doi:https://doi.org/10.1016/S0167-2738(01)01027-X

    CAS  Google Scholar 

  92. Atkinson A, Selcuk A (2000) Solid State Ionics 134:59. doi:https://doi.org/10.1016/S0167-2738(00)00714-1

    CAS  Google Scholar 

  93. D’Souza CM, Sammes NM (2000) J Am Ceram Soc 83:47. doi:https://doi.org/10.1111/j.1151-2916.2000.tb01146.x

    Google Scholar 

  94. Meixner DL, Cutler RA (2002) Solid State Ionics 146:285. doi:https://doi.org/10.1016/S0167-2738(01)01028-1

    CAS  Google Scholar 

  95. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) J Electrochem Soc 138:2719. doi:https://doi.org/10.1149/1.2086043

    CAS  Google Scholar 

  96. Yokokawa H, Horita T, Sakai N, Dokiya M, Kawada T (1996) Solid State Ionics 86–88:1161. doi:https://doi.org/10.1016/0167-2738(96)00281-0

    Google Scholar 

  97. Yokokawa H, Sakai N, Kawada T, Dokiya M (1993) In: Badwal SPS, Bannister MJ, Hannink RHJ (eds) Science and technology of zirconia V. Technomic Publishing Company, Inc., Melbourne, p 752

  98. Yokokawa H (2003) Annu Rev Mater Res 33:581. doi:https://doi.org/10.1146/annurev.matsci.33.022802.093856

    CAS  Google Scholar 

  99. Tsai T, Barnett SA (1997) Solid State Ionics 93:207. doi:https://doi.org/10.1016/S0167-2738(96)00524-3

    CAS  Google Scholar 

  100. Mitterdorfer A, Gauckler LJ (1998) Solid State Ionics 111:185. doi:https://doi.org/10.1016/S0167-2738(98)00195-7

    CAS  Google Scholar 

  101. Stochniol G, Syskakis E, Naoumidis A (1995) J Am Ceram Soc 78:929. doi:https://doi.org/10.1111/j.1151-2916.1995.tb08416.x

    CAS  Google Scholar 

  102. Lau SK, Singhal SC (1985) In: Corrosion 85. The National Association of Corrosion Engineers, Houston, p 1

  103. Brugnoni C, Ducati U, Scagliotti M (1995) Solid State Ionics 76:177. doi:https://doi.org/10.1016/0167-2738(94)00299-8

    CAS  Google Scholar 

  104. Taimatsu H, Wada K, Kaneko H, Yamamura H (1992) J Am Ceram Soc 75:401. doi:https://doi.org/10.1111/j.1151-2916.1992.tb08193.x

    CAS  Google Scholar 

  105. Tricker DM, Stobbs WM (1993) In: Poulsen FW, Bentzen JJ, Jacobsen T, Skou E, Ostergard MJL (eds) 14th Riso international symposium on materials science: high temperature electrochemical behaviour of fast ion and mixed conductors. Riso National Laboratory, Roskilde, p 453

  106. Jiang SP, Zhang JP, Ramprakash Y, Milosevic D, Wilshier K (2000) J Mater Sci 35:2735. doi:https://doi.org/10.1023/A:1004766212164

    CAS  Google Scholar 

  107. Kenjo T, Nishiya M (1992) Solid State Ionics 57:295. doi:https://doi.org/10.1016/0167-2738(92)90161-H

    CAS  Google Scholar 

  108. Yamamoto O, Takeda Y, Kanno R, Kojima T (1989) In: Singhal SC (ed) SOFC-I. The Electrochemical Society, Inc., Pennington, p 242

  109. Mori M, Abe T, Itoh H, Yamamoto O, Shen GQ, Takeda Y et al (1999) Solid State Ionics 123:113. doi:https://doi.org/10.1016/S0167-2738(99)00115-0

    CAS  Google Scholar 

  110. Jiang SP, Zhang JP, Foger K (2003) J Eur Ceram Soc 23:1865. doi:https://doi.org/10.1016/S0955-2219(02)00447-8

    CAS  Google Scholar 

  111. Kawada T, Sakai N, Yokokawa H, Dokiya M, Anzai I (1992) Solid State Ionics 50:189. doi:https://doi.org/10.1016/0167-2738(92)90218-E

    CAS  Google Scholar 

  112. Waller D, Sirman JD, Kilner JA (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington

  113. Clausen C, Bagger C, Bildesorensen JB, Horsewell A (1994) Solid State Ionics 70:59. doi:https://doi.org/10.1016/0167-2738(94)90287-9

    Google Scholar 

  114. Yamamoto O, Shen GQ, Takeda Y, Imanishi N, Sakaki Y (1991) In: SOFC-II. The Electrochemical Society, Inc., Pennington, p 158

  115. van Roosmalen JAM, Cordfunke EHP (1992) Solid State Ionics 52:303. doi:https://doi.org/10.1016/0167-2738(92)90177-Q

    Google Scholar 

  116. Zhang JP, Jiang SP, Love JG, Foger K, Badwal SPS (1998) J Mater Chem 8:2787. doi:https://doi.org/10.1039/a805835k

    CAS  Google Scholar 

  117. Khandkar A, Elangovan S, Liu M (1992) Solid State Ionics 52:57. doi:https://doi.org/10.1016/0167-2738(92)90091-3

    CAS  Google Scholar 

  118. Mitsuyasu H, Eguchi K, Arai H (1997) Solid State Ionics 100:11. doi:https://doi.org/10.1016/S0167-2738(97)00343-3

    CAS  Google Scholar 

  119. Labrincha JA, Frade JR, Marques FMB (1993) J Mater Sci 28:3809. doi:https://doi.org/10.1007/BF00353183

    CAS  Google Scholar 

  120. Wagner C (1933) Z Phys Chem B 21:25

    Google Scholar 

  121. Poulsen FW, Vanderpuil N (1992) Solid State Ionics 53–56:777

    Google Scholar 

  122. Ciacchi FT, Crane KM, Badwal SPS (1994) Solid State Ionics 73:49. doi:https://doi.org/10.1016/0167-2738(94)90263-1

    CAS  Google Scholar 

  123. Takeda Y, Tu HY, Sakaki H, Watanabe S, Imanishi N, Yamamoto O et al (1997) J Electrochem Soc 144:2810. doi:https://doi.org/10.1149/1.1837899

    CAS  Google Scholar 

  124. Huang KQ, Feng M, Goodenough JB, Schmerling M (1996) J Electrochem Soc 143:3630. doi:https://doi.org/10.1149/1.1837262

    CAS  Google Scholar 

  125. Naoumidis A, Ahmad-Khanlou A, Samardzija Z, Kolar D (1999) Fresenius J Anal Chem 365:277. doi:https://doi.org/10.1007/s002160051488

    Google Scholar 

  126. Pelosato R, Sora IN, Dotelli G, Ruffo R, Mari CM (2005) J Eur Ceram Soc 25:2587. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.03.107

    CAS  Google Scholar 

  127. Ullmann H, Trofimenko N, Naoumidis A, Stover D (1999) J Eur Ceram Soc 19:791. doi:https://doi.org/10.1016/S0955-2219(98)00315-X

    CAS  Google Scholar 

  128. Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ionics 99:297. doi:https://doi.org/10.1016/S0167-2738(97)00247-6

    CAS  Google Scholar 

  129. Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y et al (1995) J Power Sources 55:73. doi:https://doi.org/10.1016/0378-7753(94)02172-Y

    CAS  Google Scholar 

  130. Paulson SC, Birss VI (2004) J Electrochem Soc 151:A1961. doi:https://doi.org/10.1149/1.1806392

    CAS  Google Scholar 

  131. Matsuzaki Y, Yasuda I (2000) Solid State Ionics 132:271. doi:https://doi.org/10.1016/S0167-2738(00)00654-8

    CAS  Google Scholar 

  132. Matsuzaki Y, Yasuda I (2001) J Electrochem Soc 148:A126. doi:https://doi.org/10.1149/1.1339869

    CAS  Google Scholar 

  133. Hilpert K, Das D, Miller M, Peck DH, Weiss R (1996) J Electrochem Soc 143:3642. doi:https://doi.org/10.1149/1.1837264

    CAS  Google Scholar 

  134. Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L et al (2006) J Electrochem Soc 153:A765. doi:https://doi.org/10.1149/1.2172563

    CAS  Google Scholar 

  135. Jiang SP, Zhang JP, Foger K (2001) J Electrochem Soc 148:C447. doi:https://doi.org/10.1149/1.1374446

    CAS  Google Scholar 

  136. Jiang SP, Zhang JP, Apateanu L, Foger K (1999) Electrochem Commun 1:394. doi:https://doi.org/10.1016/S1388-2481(99)00080-6

    CAS  Google Scholar 

  137. Jiang SP, Zhang JP, Apateanu L, Foger K (2000) J Electrochem Soc 147:4013. doi:https://doi.org/10.1149/1.1394012

    CAS  Google Scholar 

  138. Jiang SP, Zhang JP, Zheng XG (2002) J Eur Ceram Soc 22:361. doi:https://doi.org/10.1016/S0955-2219(01)00280-1

    CAS  Google Scholar 

  139. Jiang SP, Zhang S, Zhen YD (2005) J Mater Res 20:747. doi:https://doi.org/10.1557/JMR.2005.0101

    CAS  Google Scholar 

  140. Jiang SP, Wang W (2005) Electrochem Solid-State Lett 8:A115. doi:https://doi.org/10.1149/1.1847689

    CAS  Google Scholar 

  141. Jiang SP, Zhen YD, Zhang S (2006) J Electrochem Soc 153:A1511. doi:https://doi.org/10.1149/1.2207060

    CAS  Google Scholar 

  142. Quadakkers WJ, Greiner H, Hansel M, Pattanaik A, Khanna AS, Mallener W (1996) Solid State Ionics 91:55. doi:https://doi.org/10.1016/S0167-2738(96)00425-0

    CAS  Google Scholar 

  143. Zhen YD, Jiang SP, Zhang S, Tan V (2006) J Eur Ceram Soc 26:3253. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.10.002

    CAS  Google Scholar 

  144. Kim JH, Song RH, Hyun SH (2004) Solid State Ionics 174:185. doi:https://doi.org/10.1016/j.ssi.2004.07.032

    CAS  Google Scholar 

  145. Fujita K, Ogasawara K, Matsuzaki Y, Sakurai T (2004) J Power Sources 131:261. doi:https://doi.org/10.1016/j.jpowsour.2003.12.051

    CAS  Google Scholar 

  146. Huang KQ, Hou PY, Goodenough JB (2000) Solid State Ionics 129:237. doi:https://doi.org/10.1016/S0167-2738(99)00329-X

    CAS  Google Scholar 

  147. Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:425. doi:https://doi.org/10.1016/j.ssi.2004.10.004

    CAS  Google Scholar 

  148. Li JQ, Xiao P (2001) J Eur Ceram Soc 21:659. doi:https://doi.org/10.1016/S0955-2219(00)00242-9

    Google Scholar 

  149. Lahl N, Singheiser L, Hilpert K (1999) In: Singhal SC, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Pennington, p 1057

  150. Gunther C, Hofer G, Kleinlein W (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 746

  151. Jiang SP, Christiansen L, Hughan B, Foger K (2001) J Mater Sci Lett 20:695. doi:https://doi.org/10.1023/A:1010950722533

    CAS  Google Scholar 

  152. van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134. doi:https://doi.org/10.1149/1.1837375

    Google Scholar 

  153. Chen XJ, Khor KA, Chan SH (2004) Solid State Ionics 167:379. doi:https://doi.org/10.1016/j.ssi.2003.08.049

    CAS  Google Scholar 

  154. Kikuchi R, Murakami K, Futamura M, Matsui T, Eguchi K (2007) ECS Trans 7:1251. doi:https://doi.org/10.1149/1.2729226

    Google Scholar 

  155. McEvoy AJ (2000) Solid State Ionics 135:331. doi:https://doi.org/10.1016/S0167-2738(00)00460-4

    CAS  Google Scholar 

  156. Haanappel VAC, Mai A, Mertens J (2006) Solid State Ionics 177:2033. doi:https://doi.org/10.1016/j.ssi.2005.12.038

    CAS  Google Scholar 

  157. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) J Appl Electrochem 34:409. doi:https://doi.org/10.1023/B:JACH.0000016627.29374.24

    CAS  Google Scholar 

  158. Lee YK, Kim JY, Lee YK, Kim I, Moon HS, Park JW et al (2003) J Power Sources 115:219. doi:https://doi.org/10.1016/S0378-7753(02)00727-9

    CAS  Google Scholar 

  159. McIntosh S, Adler SB, Vohs JM, Gorte RJ (2004) Electrochem Solid-State Lett 7:A111. doi:https://doi.org/10.1149/1.1667792

    CAS  Google Scholar 

  160. Tsukuda H, Yamashita H (1994) In: Bossel U (ed) First European SOFC forum. European Fuel Cells Group, Lucerne, p 715

  161. Kuznecov M, Otschik P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ionics 157:371. doi:https://doi.org/10.1016/S0167-2738(02)00235-7

    CAS  Google Scholar 

  162. Wang W, Jiang SP (2004) J Solid State Electrochem 8:914. doi:https://doi.org/10.1007/s10008-004-0515-z

    CAS  Google Scholar 

  163. Jiang SP, Love JG (2003) Solid State Ionics 158:45. doi:https://doi.org/10.1016/S0167-2738(02)00760-9

    CAS  Google Scholar 

  164. Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741. doi:https://doi.org/10.1016/0013-4686(94)00361-4

    CAS  Google Scholar 

  165. Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ (1998) J Electrochem Soc 145:373. doi:https://doi.org/10.1149/1.1838271

    CAS  Google Scholar 

  166. Gharbage B, Pagnier T, Hammou A (1994) J Electrochem Soc 141:2118. doi:https://doi.org/10.1149/1.2055071

    CAS  Google Scholar 

  167. Jiang SP, Zhang JP, Foger K (2000) J Electrochem Soc 147:3195. doi:https://doi.org/10.1149/1.1393883

    CAS  Google Scholar 

  168. Jiang SP, Love JG, Ramprakash Y (2002) J Power Sources 110:201. doi:https://doi.org/10.1016/S0378-7753(02)00259-8

    CAS  Google Scholar 

  169. Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) J Electrochem Soc 138:1867. doi:https://doi.org/10.1149/1.2085891

    CAS  Google Scholar 

  170. van Heuveln FH, Bouwmeester HJM, van Berkel FPF (1997) J Electrochem Soc 144:126. doi:https://doi.org/10.1149/1.1837374

    Google Scholar 

  171. Fukunaga H, Ihara M, Sakaki K, Yamada K (1996) Solid State Ionics 86–88:1179. doi:https://doi.org/10.1016/0167-2738(96)00284-6

    Google Scholar 

  172. Sasaki K, Gauckler LJ (1996) Denki Kagaku 64:654

    CAS  Google Scholar 

  173. Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530. doi:https://doi.org/10.1149/1.1836476

    CAS  Google Scholar 

  174. Lee HK (2002) Mater Chem Phys 77:639. doi:https://doi.org/10.1016/S0254-0584(02)00091-3

    Google Scholar 

  175. Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionics 22:241. doi:https://doi.org/10.1016/0167-2738(87)90039-7

    CAS  Google Scholar 

  176. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656. doi:https://doi.org/10.1149/1.2100267

    CAS  Google Scholar 

  177. Ishihara T, Kudo T, Matsuda H, Takita Y (1994) J Am Ceram Soc 77:1682. doi:https://doi.org/10.1111/j.1151-2916.1994.tb09779.x

    CAS  Google Scholar 

  178. Ishihara T, Kudo T, Matsuda H, Takita Y (1995) J Electrochem Soc 142:1519. doi:https://doi.org/10.1149/1.2048606

    CAS  Google Scholar 

  179. Huang XQ, Liu J, Lu Z, Liu W, Pei L, He TM et al (2000) Solid State Ionics 130:195. doi:https://doi.org/10.1016/S0167-2738(00)00643-3

    CAS  Google Scholar 

  180. Hayashi K, Yamamoto O, Nishigaki Y, Minoura H (1997) Solid State Ionics 98:49. doi:https://doi.org/10.1016/S0167-2738(97)00098-2

    CAS  Google Scholar 

  181. Xia CR, Zhang YL, Liu ML (2003) Electrochem Solid-State Lett 6:A290. doi:https://doi.org/10.1149/1.1621830

    CAS  Google Scholar 

  182. Choi JH, Jang JH, Oh SM (2001) Electrochim Acta 46:867. doi:https://doi.org/10.1016/S0013-4686(00)00666-6

    CAS  Google Scholar 

  183. Jorgensen MJ, Primdahl S, Bagger C, Mogensen M (2001) Solid State Ionics 139:1. doi:https://doi.org/10.1016/S0167-2738(00)00818-3

    CAS  Google Scholar 

  184. Barbucci A, Viviani M, Carpanese P, Vladikova D, Stoynov Z (2006) Electrochim Acta 51:1641. doi:https://doi.org/10.1016/j.electacta.2005.02.106

    CAS  Google Scholar 

  185. Co AC, Xia SJ, Birss VI (2005) J Electrochem Soc 152:A570. doi:https://doi.org/10.1149/1.1859612

    CAS  Google Scholar 

  186. Kamata H, Hosaka A, Mizusaki J, Tagawa H (1998) Solid State Ionics 106:237. doi:https://doi.org/10.1016/S0167-2738(97)00495-5

    CAS  Google Scholar 

  187. Zhen YD, Jiang SP (2006) J Electrochem Soc 153:A2245. doi:https://doi.org/10.1149/1.2357712

    CAS  Google Scholar 

  188. Suzuki T, Awano M, Jasinski P, Petrovsky V, Anderson HU (2006) Solid State Ionics 177:2071. doi:https://doi.org/10.1016/j.ssi.2005.12.016

    CAS  Google Scholar 

  189. Murray EP, Tsai T, Barnett SA (1998) Solid State Ionics 110:235. doi:https://doi.org/10.1016/S0167-2738(98)00142-8

    CAS  Google Scholar 

  190. Song HS, Kim WH, Hyun SH, Moon J, Kim J, Lee HW (2007) J Power Sources 167:258. doi:https://doi.org/10.1016/j.jpowsour.2007.01.095

    CAS  Google Scholar 

  191. Murray EP, Barnett SA (2001) Solid State Ionics 143:265. doi:https://doi.org/10.1016/S0167-2738(01)00871-2

    Google Scholar 

  192. Xia CR, Rauch W, Wellborn W, Liu ML (2002) Electrochem Solid-State Lett 5:A217. doi:https://doi.org/10.1149/1.1503203

    CAS  Google Scholar 

  193. Zhao H, Huo LH, Gao S (2004) J Power Sources 125:149. doi:https://doi.org/10.1016/j.jpowsour.2003.07.009

    CAS  Google Scholar 

  194. Yi JY, Choi GM (2004) J Eur Ceram Soc 24:1359. doi:https://doi.org/10.1016/S0955-2219(03)00569-7

    CAS  Google Scholar 

  195. Armstrong TJ, Virkar AV (2002) J Electrochem Soc 149:A1565. doi:https://doi.org/10.1149/1.1517282

    CAS  Google Scholar 

  196. Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, Buergler BE, Nunez P, Gauckler LJ (2006) J Power Sources 159:914. doi:https://doi.org/10.1016/j.jpowsour.2005.11.036

    CAS  Google Scholar 

  197. Tanner CW, Fung KZ, Virkar AV (1997) J Electrochem Soc 144:21. doi:https://doi.org/10.1149/1.1837360

    CAS  Google Scholar 

  198. Liu Y, Zha SW, Liu ML (2004) Adv Mater 16:256. doi:https://doi.org/10.1002/adma.200305767

    Google Scholar 

  199. Jiang SP (2006) Mater Sci Eng A Struct Mater Prop Microstruct Process 418:199

    Google Scholar 

  200. Jiang SP, Wang W (2005) Solid State Ionics 176:1351. doi:https://doi.org/10.1016/j.ssi.2005.03.011

    CAS  Google Scholar 

  201. Jiang SP, Wang W (2005) J Electrochem Soc 152:A1398. doi:https://doi.org/10.1149/1.1928167

    CAS  Google Scholar 

  202. Yamahara K, Jacobson CP, Visco SJ, Zhang XF, de Jonghe LC (2005) Solid State Ionics 176:275. doi:https://doi.org/10.1016/j.ssi.2004.08.017

    CAS  Google Scholar 

  203. Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173. doi:https://doi.org/10.1016/S0378-7753(96)02361-0

    CAS  Google Scholar 

  204. Holtappels P, Bagger C (2002) J Eur Ceram Soc 22:41. doi:https://doi.org/10.1016/S0955-2219(01)00238-2

    CAS  Google Scholar 

  205. Liu Y, Compson C, Liu ML (2004) J Power Sources 138:194. doi:https://doi.org/10.1016/j.jpowsour.2004.06.035

    CAS  Google Scholar 

  206. Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288:2031. doi:https://doi.org/10.1126/science.288.5473.2031

    CAS  Google Scholar 

  207. Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2007) Appl Catal Gen 323:181. doi:https://doi.org/10.1016/j.apcata.2007.02.020

    CAS  Google Scholar 

  208. Demin AK, Gulbis FY (2000) Solid State Ionics 135:451. doi:https://doi.org/10.1016/S0167-2738(00)00395-7

    CAS  Google Scholar 

  209. van Heuveln FH (1994) J Electrochem Soc 141:3423. doi:https://doi.org/10.1149/1.2059348

    Google Scholar 

  210. Tannenberger H, Siegert H (1969) Adv Chem Ser 90:281

    Google Scholar 

  211. Itagaki Y, Matsubara F, Asamoto M, Yamaura H, Yahiro H, Sadaoka Y (2007) ECS Trans 7:1319. doi:https://doi.org/10.1149/1.2729235

    Google Scholar 

  212. Jiang SP (2003) J Power Sources 124:390. doi:https://doi.org/10.1016/S0378-7753(03)00814-0

    CAS  Google Scholar 

  213. Jiang SP (2001) J Electrochem Soc 148:A887. doi:https://doi.org/10.1149/1.1383776

    CAS  Google Scholar 

  214. Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146:1. doi:https://doi.org/10.1149/1.1391555

    CAS  Google Scholar 

  215. Tsai T, Barnett SA (1997) Solid State Ionics 98:191. doi:https://doi.org/10.1016/S0167-2738(97)00113-6

    CAS  Google Scholar 

  216. Kawagoe Y, Namie S, Nomura M, Kumakura T, Shiozaki K, Nakajima Y (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 549

  217. Lai TS, Barnett SA (2007) J Power Sources 164:742. doi:https://doi.org/10.1016/j.jpowsour.2006.10.075

    CAS  Google Scholar 

  218. Jiang SP (2003) J Mater Sci 38:3775. doi:https://doi.org/10.1023/A:1025936317472

    CAS  Google Scholar 

  219. Iwata T (1996) J Electrochem Soc 143:1521. doi:https://doi.org/10.1149/1.1836673

    CAS  Google Scholar 

  220. Simwonis D, Tietz F, Stover D (2000) Solid State Ionics 132:241. doi:https://doi.org/10.1016/S0167-2738(00)00650-0

    CAS  Google Scholar 

  221. Itoh H, Yamamoto T, Mori M, Horita T, Sakai N, Yokokawa H et al (1997) J Electrochem Soc 144:641. doi:https://doi.org/10.1149/1.1837460

    CAS  Google Scholar 

  222. van Roosmalen JAM, Cordfunke EHP, Huijsmans JPP (1993) Solid State Ionics 66:285. doi:https://doi.org/10.1016/0167-2738(93)90418-3

    Google Scholar 

  223. Stevenson JW, Hallman PF, Armstrong TR, Chick LA (1995) J Am Ceram Soc 78:507. doi:https://doi.org/10.1111/j.1151-2916.1995.tb08207.x

    CAS  Google Scholar 

  224. Katayama K, Ishihara T, Ohta H, Takeuchi SJ, Esaki Y, Inukai E (1989) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi—J Ceram Soc Jpn 97:1327

    CAS  Google Scholar 

  225. Poirson A, Decorse P, Caboche G, Dufour LC (1997) Solid State Ionics 99:287. doi:https://doi.org/10.1016/S0167-2738(97)00260-9

    CAS  Google Scholar 

  226. Mori M (2005) J Electrochem Soc 152:A732. doi:https://doi.org/10.1149/1.1864312

    CAS  Google Scholar 

  227. Jorgensen MJ, Holtappels P, Appel CC (2000) J Appl Electrochem 30:411. doi:https://doi.org/10.1023/A:1003987318963

    CAS  Google Scholar 

  228. Jiang SP, Wang W (2005) Solid State Ionics 176:1185. doi:https://doi.org/10.1016/j.ssi.2005.02.013

    CAS  Google Scholar 

  229. Badwal S, Foger K (1998) In: Stevens P (ed) Third European SOFC forum. The European Fuel Cells Group, Lucerne, p 95

  230. Tietz F (2004) In: Morgensen M (ed) Sixth European SOFC forum. The European Fuel Cells Group, Lucerne, p 289

  231. Singhal SC (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 37

  232. Kusnezoff M, Trofimenko N, Mosch S, Beckert W, Graff A, Altmann F (2007) ECS Trans 7:1033. doi:https://doi.org/10.1149/1.2729199

    Google Scholar 

  233. Weber A, Manner R, Jobst B, Schiele M, Cerva H, Waser R et al (1996) In: Poulson FW, Bonanos N, Linderoth S, Mogensen M, Zacharau-Christiansen B (eds) Seventeenth Riso international symposium on materials science: high temperature electrochemistry: ceramics and metals. Riso National Laboratory, Roskilde, p 473

  234. Sholklapper TZ, Radmilovic V, Jacobson CP, Visco SJ, De Jonghe LC (2007) Electrochem Solid-State Lett 10:B74. doi:https://doi.org/10.1149/1.2434203

    CAS  Google Scholar 

  235. Herbstritt D, Weber A, Ivers-Tiffee E (1999) In: Singhal SC, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Honolulu, p 972

  236. Bergsmark E, Furuseth S, Dyrlie O, Norby T, Kofstad P (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC-II. Commission of the European Communities, Luxembourg, p 473

  237. Liang FL, Chen J, Cheng JL, Jiang SP, He TM, Pu J et al (2008) Electrochem Commun 10:42. doi:https://doi.org/10.1016/j.elecom.2007.10.016

    CAS  Google Scholar 

  238. Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161. doi:https://doi.org/10.1023/A:1004881825710

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S.P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43, 6799–6833 (2008). https://doi.org/10.1007/s10853-008-2966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2966-6

Keywords

Navigation