Skip to main content
Log in

Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Two types of lanthanum doped strontium manganite (LSM)-yttria-stabilized zirconia (YSZ) composite cathodes were prepared, one with the finger-like straight open pores by the phase inversion tape casting, and the other with the randomly distributed tortuous pores by the conventional tape casting. A gas permeation flux of 42.5 × 105 Lm−2 h−1 was measured under a trans-membrane pressure of 0.6 bar for the former while only 10.6 × 105 Lm−2 h−1 for the latter. Fuel cells supported on the as-prepared LSM-YSZ composite cathodes were fabricated, comprising a 15 μm thick YSZ electrolyte layer and a 20 μm thick NiO-YSZ anode. The electrochemical performance of the fuel cells was measured using H2 as fuels and air as oxidants. The cell supported on the phase-inversion derived cathode showed a maximum power density of 362 mWcm−2 at 850 °C, while only 149 mWcm−2 for the cell supported on the cathode formed by the conventional method. The difference in the electrochemical performance between the two cells can be attributed to the pore structure of the cathode supports. It is concluded that the phase inversion tape casting provides a simple and effective approach for tailoring the pore structure of the cathode support and thus enhancing the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.C. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)

    Article  Google Scholar 

  2. S.C. Singhal, Science and Technology of Solid-Oxide Fuel Cells. MRS Bull. 25(03), 16–21 (2011). https://doi.org/10.1557/mrs2000.13

    Article  Google Scholar 

  3. X. Li, N. Xu, X. Zhao, K. Huang, Performance of a commercial cathode-supported solid oxide fuel cells prepared by single-step infiltration of an ion-conducting electrocatalyst. J. Power Sources 199, 132–137 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.079

    Article  Google Scholar 

  4. T.X. Ho, P. Kosinski, A.C. Hoffmann, A. Vik, Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chem. Eng. Sci. 64(12), 3000–3009 (2009). https://doi.org/10.1016/j.ces.2009.03.043

    Article  Google Scholar 

  5. K. Yamahara, C. Jacobson, S. Visco, X. Zhang, L. Dejonghe, Thin film SOFCs with cobalt-infiltrated cathodes. Solid State Ionics 176(3–4), 275–279 (2005). https://doi.org/10.1016/j.ssi.2004.08.017

    Article  Google Scholar 

  6. K. Huang, A. Zampieri, M. Ise, Cathode polarizations of a cathode-supported solid oxide fuel cell. J. Electrochem. Soc. 157(10), B1471 (2010). https://doi.org/10.1149/1.3478145

    Article  Google Scholar 

  7. Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs. J. Power Sources 164(1), 56–64 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.093

    Article  Google Scholar 

  8. G. Miao, C. Yuan, T. Chen, Y. Zhou, W. Zhan, S. Wang, Sr2Fe1+xMo1−xO6−δ as anode material of cathode–supported solid oxide fuel cells. Int. J. Hydrog. Energy 41(2), 1104–1111 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.045

    Article  Google Scholar 

  9. K. Yamahara, C. Jacobson, S. Visco, L. Dejonghe, Catalyst-infiltrated supporting cathode for thin-film SOFCs. Solid State Ionics 176(5–6), 451–456 (2005). https://doi.org/10.1016/j.ssi.2004.09.023

    Article  Google Scholar 

  10. M. Liu, D. Dong, F. Zhao, J. Gao, D. Ding, X. Liu, G. Meng, High-performance cathode-supported SOFCs prepared by a single-step co-firing process. J. Power Sources 182(2), 585–588 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.039

    Article  Google Scholar 

  11. T. Liu, Y. Wang, Y. Zhang, S. Fang, L. Lei, C. Ren, F. Chen, Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochem. Commun. 61, 106–109 (2015). https://doi.org/10.1016/j.elecom.2015.10.015

    Article  Google Scholar 

  12. C. Jin, C. Yang, F. Chen, Effects on microstructure of NiO–YSZ anode support fabricated by phase-inversion method. J. Membr. Sci. 363(1–2), 250–255 (2010). https://doi.org/10.1016/j.memsci.2010.07.044

    Article  Google Scholar 

  13. C. Ren, T. Liu, P. Maturavongsadit, J.A. Luckanagul, F. Chen, Effect of PEG additive on anode microstructure and cell performance of anode-supported MT-SOFCs fabricated by phase inversion method. J. Power Sources 279, 774–780 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.140

    Article  Google Scholar 

  14. W. He, H. Huang, G. J-f, L. Winnubst, C. C-s, Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes. J. Membr. Sci. 452, 294–299 (2014). https://doi.org/10.1016/j.memsci.2013.09.063

    Article  Google Scholar 

  15. H. Huang, J. Lin, Y. Wang, S. Wang, C. Xia, C. Chen, Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method. J. Power Sources 274, 1114–1117 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.190

    Article  Google Scholar 

  16. M. Marinšek, K. Zupan, J. Maeek, Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources 106(1), 178–188 (2002)

    Article  Google Scholar 

  17. S.U. Rehman, R.-H. Song, J.-W. Lee, T.-H. Lim, S.-J. Park, S.-B. Lee, Effect of GDC addition method on the properties of LSM–YSZ composite cathode support for solid oxide fuel cells. Ceram. Int. 42(10), 11772–11779 (2016). https://doi.org/10.1016/j.ceramint.2016.04.098

    Article  Google Scholar 

  18. T. Liu, C. Ren, S. Fang, Y. Wang, F. Chen, Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. ACS Appl. Mater. Interfaces 6(21), 18853–18860 (2014). https://doi.org/10.1021/am5046907

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant NOs.51572255, 51602228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chusheng Chen or Zhongliang Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Lin, J., Liu, T. et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells. J Electroceram 40, 138–143 (2018). https://doi.org/10.1007/s10832-018-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0112-7

Keywords

Navigation