Skip to main content

Advertisement

Log in

The development of a hydrogeophysical model as a tool for groundwater risk assessment: a case study in the critical region of the Toluca Valley Aquifer, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Multidisciplinary information such as geophysical, hydraulic, geological, and hydrogeological information combined with GIS can be a powerful tool to better understand aquifers. The aim of this paper is to assess groundwater pollution risk through regional hydrogeological and local hydrogeophysical models built from multidisciplinary information and geophysical well logs. Once the regional model of the Toluca Valley Aquifer (Mexico) was built, the critical area (CA) of the aquifer was identified through features such as fractures and faults, pollution sources, subsidence, groundwater table depletion, and well density, which were transformed into GIS with multicriteria analysis. With the CA a local hydrogeophysical model was set to extract lithological information and compute the intrinsic vulnerability (IV) through the Dar Zarrouk parameters according to the AVI-Fr method which considers the influence of fractures and faults as preferential paths for pollutants. On the other hand, the potential harmful load (PHL) of the different pollution sources was estimated with the POSH method. Finally, with the relation between the IV and PHL, risk pollution map could be made. The results of this study show that different areas are exposed to pollution risk due to their proximity to fractures, oil and gas subsurface infrastructure and high pumping ratios and their relationships. The available geophysical data and multidisciplinary information were powerful tools for identifying the critical area of the TVA and proposing actions to mitigate or control excessive withdrawals for sustainable management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data used in this paper are available in: Díaz-Espíritu N. (2021) Elaboración de un modelo hidrogeofísico de la región central del acuífero del valle de Toluca, Estado de México, como herramienta para su manejo sustentable. Tesis de maestría, Universidad Autónoma del Estado de México. In the following URI: http://hdl.handle.net/20.500.11799/111292.

References

  • Agua y Saneamiento de Toluca (AYST) (1972) Reporte técnico del corte litológico del pozo San Pedro Totoltepec, Toluca, Estado de México

  • Agua y Saneamiento de Toluca (AYST) (1980) Reporte técnico del corte litológico del pozo Los Ahuehuetes, Toluca, Estado de México

  • Agua y Saneamiento de Toluca (AYST) (1981) Reporte técnico del corte litológico del pozo Santa María de las Rosas, Toluca, Estado de México

  • Agua y Saneamiento de Toluca (AYST) (2018) Reporte técnico del corte litológico del pozo Tollocan No. 3, Toluca, Estado de México

  • Agua y Saneamiento de Toluca (AYST) (2019) Reporte técnico del corte litológico del pozo Pablo Sidar, Toluca, Estado de México

  • Almazán R (2017) Peligros Geológicos por Fallas y Grietas en la Zona Metropolitana del Valle de Toluca con base en un Estudio Morfoestructural. Tesis licenciatura, Universidad Autónoma del Estado de México

  • Arce JL, Macías JL, Vázquez-Selem L (2003) The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: stratigraphy and hazard implications. Bull Geol Soc Am. https://doi.org/10.1130/0016-7606(2003)115%3c0230:TKPEON%3e2.0.CO;2

    Article  Google Scholar 

  • Arroyo N (2016) Distribución Espacial y Evaluación Temporal del Proceso de Consolidación del Terreno por la Sobreexplotación del Agua Subterránea. Tesis doctoral, Universidad Autónoma del Estado de México

  • Barros MFS, Louro VHA, Terada RK, Marques CHG, Saraiva FA, Hirata R (2021) Vertical electrical soundings in the mapping of vulnerability to contamination of the Adamantina aquifer in Urânia, São Paulo, Brazil. Geol USP Serie Cient 21(1):89–102

    Google Scholar 

  • Bense VF, Van Balen R (2004) The effect of fault relay and clay smearing on groundwater flow patterns in the Lower Rhine Embayment. Basin Res. https://doi.org/10.1111/j.1365-2117.2004.00238.x

    Article  Google Scholar 

  • Bense VF, Van den Berg EH, Van Balen RT (2003) Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeol J. https://doi.org/10.1007/s10040-003-0262-8

    Article  Google Scholar 

  • Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res. https://doi.org/10.1002/2015WR017016

    Article  Google Scholar 

  • Brown JJ, Das P, Al-Saidi M (2018) Sustainable agriculture in the Arabian/Persian Gulf region utilizing marginal water resources: making the best of a bad situation. Sustainability 10(5):1364. https://doi.org/10.3390/SU10051364

    Article  Google Scholar 

  • Bücker M, Flores Orozco A, Gallistl J, Steiner M, Aigner L, Hoppenbrock J, Glebe R, Morales Barrera W, Pita de la Paz C, García García CE, Razo Pérez JA (2021) Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico. Solid Earth 12(2):439–461. https://doi.org/10.5194/se-12-439-2021

    Article  Google Scholar 

  • Caparrini N (2006) Interpretación y Correlación de Registros Geofísicos en Sondeos de Captación de Aguas Subterráneas para la Caracterización Hidrogeológica y la Gestión de la Explotación. Universidad Politécnica de Madrid

  • Castellazzi P, Arroyo-Domínguez N, Martel R, Calderhead AI, Normand JCL, Gárfias J, Rivera A (2016) Land subsidence in major cities of Central Mexico: interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int J Appl Earth Obs Geoinf 47:102–111. https://doi.org/10.1016/j.jag.2015.12.002

    Article  Google Scholar 

  • Castellazzi P, Garfias J, Martel R (2021) Assessing the efficiency of mitigation measures to reduce groundwater depletion and related land subsidence in Querétaro (Central Mexico) from decadal InSAR observations. Int J Appl Earth Obs Geoinf. https://doi.org/10.1016/j.jag.2021.102632

    Article  Google Scholar 

  • Cegan JC, Filion AM, Keisler JM, Linkov I (2017) Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environ Syst Decis 37(2):123–133. https://doi.org/10.1007/s10669-017-9642-9

    Article  Google Scholar 

  • Cilona A, Aydin A, Likerman J, Parker B, Cherry J (2016) Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: implications for their effects on groundwater flow and contaminant transport. J Struct Geol. https://doi.org/10.1016/j.jsg.2016.02.003

    Article  Google Scholar 

  • Coconi E (2017) Registros Geofísicos de Pozos, evaluación de Formaciones y Aplicaciones a la Industria Petrolera

  • CONAGUA (2020a) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero San Luis Potosí (2411), Estado de San Luis Potosí

  • CONAGUA (2020b) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Valle de Puebla (2104), Estado de Puebla.

  • CONAGUA (2020c) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Valle de Querétaro (2201), Estado de Querétaro

  • CONAGUA (2020d) Actualización de la disponibilidad media anual de agua en el acuífero Valle de Toluca (1501), Estado de México. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/edomex/DR_1501.pdf

  • CONAGUA (2020e) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Zona Metropolitana de la Cd. de México (0901), Ciudad de México

  • CONAGUA (2020f) Programa Nacional Hídrico 2020–2024 Resumen Comisión Nacional del Agua. https://www.gob.mx/cms/uploads/attachment/file/553479/PNH_Resumen_Imprenta_v200311.pdf

  • CONAGUA-UAEM (2013) Estudio de la Subsidencia y Agrietamientos en el Acuífero Valle de Toluca en el Estado de México

  • Dávila-Hernández N, Madrigal D, Expósito JL, Antonio X (2014) Multi-temporal analysis of land subsidence in Toluca Valley (Mexico) through a combination of persistent scatterer interferometry (PSI) and historical piezometric data. Adv Remote Sens 03(02):49–60. https://doi.org/10.4236/ars.2014.32005

    Article  Google Scholar 

  • de Sousa Pereira L, Morais DC (2020) Multicriteria decision model to establish maintenance priorities for wells in a groundwater system. Water Resour Manag 34(1):377–392. https://doi.org/10.1007/s11269-019-02457-8

    Article  Google Scholar 

  • Díaz Espíritu N (2021) Elaboración de un Modelo Hidrogeofísico de la Región Central del Acuífero del Valle de Toluca, Estado de México, como Herramienta para su Manejo Sustentable. Tesis maestría, Universidad Autónoma del Estado de México

  • Esquivel-Martínez JM, Expósito-Castillo JL, Esteller-Alberich MV, Gómez-Albores MA, Medina-Rivas CM, Fonseca-Ortiz CR (2022) Prioritization of areas for groundwater monitoring using analytic hierarchy process method in geographic information systems: a case of Mexico. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04383-6

    Article  Google Scholar 

  • Esteller MV, Rodríguez R, Cardona A, Padilla-Sánchez L (2012) Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico. Environ Monit Assess 184(9):5725–5741. https://doi.org/10.1007/s10661-011-2376-0

    Article  CAS  Google Scholar 

  • Esteller MV, Expósito JL, Díaz Delgado C, Paredes J, Fonseca CR (2014) Explotación intensiva del acuífero del Valle de Toluca: análisis de algunos efectos económicos-ambientales

  • Expósito JL (2012) Características Hidrodinámicas e Hidrogeoquímicas del Acuífero Multicapa del Valle de Toluca y sus Implicaciones en la Optimización de Estrategias para la Protección de la Calidad del Agua Subterránea. Tesis doctoral, Universidad Autónoma del Estado de México

  • Feloni E, Mousadis I, Baltas E (2020) Flood vulnerability assessment using a GIS-based multi-criteria approach—the case of Attica region. J Flood Risk Manag. https://doi.org/10.1111/jfr3.12563

    Article  Google Scholar 

  • Fernández-Torres EA, Cabral-Cano E, Novelo-Casanova DA, Solano-Rojas D, Havazli E, Salazar-Tlaczani L (2022) Correction to: risk assessment of land subsidence and associated faulting in Mexico City using InSAR. Nat Hazards. https://doi.org/10.1007/s11069-022-05482-w

    Article  Google Scholar 

  • Fonseca-Montes de Oca RMG, Ramos-Leal JA, Morán-Ramírez J, Esquivel-Martínez JM, Álvarez-Bastida C, Fuentes-Rivas RM (2020) Hydrogeochemical characterization and assessment of contamination by inorganic and organic matter in the groundwater of a volcano-sedimentary aquifer. Bull Environ Contam Toxicol 104(4):520–531. https://doi.org/10.1007/s00128-020-02819-8

    Article  CAS  Google Scholar 

  • Foster S, Hirata R, Paris M (2007) Proteccion de la Calidad del Agua Subterranea guia para empresas de agua, autoridades municipales y agencias ambientales. www.mundiprensa.com

  • Gan L, Huang G, Pei L, Gan Y, Liu C, Yang M, Han D, Song J (2022) Distributions, origins, and health-risk assessment of nitrate in groundwater in typical alluvial-pluvial fans, North China Plain. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17067-4

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Instituto de geografía-UNAM. Serie libros No. 6. 5ta Ed

  • García-Palomo A, Zamorano JJ, López-Miguel C, Galván-García A, Carlos-Valerio V, Ortega R, Macías JL (2008) El arreglo morfoestructural de la Sierra de Las Cruces, México central. Revista Mexicana De Ciencias Geologicas 25(1):158–178

    Google Scholar 

  • Geofísica Juayek (2020) Base de datos del periodo 2002–2020 de estudios y registros geofísicos de pozo en el valle de Toluca. Villa Guerrero, Estado de México

  • Heal K (2019) Watershed management in action: lessons learned from FAO Field Projects. Mt Res Dev. https://doi.org/10.1659/mrd.mm230

    Article  Google Scholar 

  • Henriet JP (1975) Direct application of the DAR Zarrouk parameters in grounwater surveys. Geophys. Prospect. 24:344–353

    Article  Google Scholar 

  • Hernández I (2014) Análisis de Subsidencia del Terreno en el Valle de Toluca a partir del Método Dual Pair Interferometry (DPI). Tesis licenciatura, Universidad Autónoma del Estado de México

  • Hernández-Espriú A, Reyna-Gutiérrez JA, Sánchez-León E, Cabral-Cano E, Carrera-Hernández J, Martínez-Santos P, Macías-Medrano S, Falorni G, Colombo D (2014) Le modèle DRASTIC-Sg: Un développement de l’approche DRASTIC pour la cartographie de la vulnérabilité des eaux souterraines pour des aquifères sujets à un affaissement différentiel des terrains, avec une application à la ville de Mexico. Hydrogeol J 22(6):1469–1485. https://doi.org/10.1007/s10040-014-1130-4

    Article  Google Scholar 

  • Hernández-Espriú A, Arango-Galván C, Reyes-Pimentel A, Martínez-Santos P, de la Paz CP, Macías-Medrano S, Arias-Paz A, Breña-Naranjo JA (2017) Water supply source evaluation in unmanaged aquifer recharge zones: the mezquital valley (Mexico) case study. Water (switzerland). https://doi.org/10.3390/w9010004

    Article  Google Scholar 

  • Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409(19):3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022

    Article  CAS  Google Scholar 

  • Ige OO, Adunbarin OO, Olaleye IM (2022) Groundwater potential and aquifer characterization within Unilorin campus, Ilorin, Southwestern Nigeria, using integrated electrical parameters. Int J Energy Water Resour. https://doi.org/10.1007/s42108-021-00160-2

    Article  Google Scholar 

  • INEGI (2021) Estructura de la población en México: 2010, 2015 y 2020. http://censo2020.mx/

  • Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (2016) Integrated groundwater management: concepts, approaches, and challenges. In: Integrated groundwater management: concepts, approaches and challenges. https://doi.org/10.1007/978-3-319-23576-9

  • Keuni N, Kenfack JV, Pelap FB, Demanou Messe MR (2021) Structural analysis of Haut-Nkam division, Central-Africa using remote sensing data and GIS technics. Egypt J Remote Sens Space Sci 24(3):687–698. https://doi.org/10.1016/J.EJRS.2021.06.008

    Article  Google Scholar 

  • Khasanov S, Li F, Kulmatov R, Zhang Q, Qiao Y, Odilov S, Yu P, Leng P, Hirwa H, Tian C, Yang G, Liu H, Akhmatov D (2022) Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: as an example of Syrdarya Province, Uzbekistan. Agric Water Manag. https://doi.org/10.1016/j.agwat.2021.107444

    Article  Google Scholar 

  • Kortas L, Younger PL (2013) Fracture patterns in the Permian magnesian limestone aquifer, Co. Durham, UK. Proc Yorks Geol Soc. https://doi.org/10.1144/pygs2013-322

    Article  Google Scholar 

  • Lezama-Campos JL, Morales-Casique E, Castrejón-Pineda R, Arce Oscar A, Escolero JL (2016) Interpretación del registro geofísico del pozo profundo San Lorenzo Tezonco y su correlación litológica en la cuenca de México. https://www.researchgate.net/publication/312977940

  • López-Montoya MA (2019) Cartografía geológico-ambiental de los volcanes de la zona centro de Toluca con énfasis en controles estructurales y su influencia en las características hidrogeológicas del área. Tesis licenciatura, Universidad Autónoma del Estado de México

  • Lugo J, Códova HC (1992) Regionalización geomorfológica de la República Mexicana

  • Malczewski J (1999) GIS and Multicriteria Decision Analysis. Jhon Wiley and Sons, Toronto

    Google Scholar 

  • Malczewski J (2006) Integrating multicriteria analysis and geographic information systems: the ordered weighted averaging (OWA) approach. Int J Environ Technol Manage 6(1/2):7–19

    Article  Google Scholar 

  • Mancuso M, Santucci L, Carol E (2020) Effects of intensive aquifers exploitation on groundwater salinity in coastal wetlands. Hydrol Proces. https://doi.org/10.1002/hyp.13727

    Article  Google Scholar 

  • Mansour S, Al-Awhadi T, Al-Hatrushi S (2020) Geospatial based multi-criteria analysis for ecotourism land suitability using GIS & AHP: a case study of Masirah Island, Oman. J Ecotour 19(2):148–167. https://doi.org/10.1080/14724049.2019.1663202

    Article  Google Scholar 

  • Martín Del Campo MA, Esteller MV, Expósito JL, Hirata R (2014) Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186(5):2979–2999. https://doi.org/10.1007/s10661-013-3595-3

    Article  CAS  Google Scholar 

  • Mohammed MAA, Szabó NP, Szűcs P (2023) Characterization of groundwater aquifers using hydrogeophysical and hydrogeochemical methods in the eastern Nile River area, Khartoum State, Sudan. Environ Earth Sci. https://doi.org/10.1007/s12665-023-10915-1

    Article  Google Scholar 

  • Muhammad S, Ehsan MI, Khalid P (2022) Optimizing exploration of quality groundwater through geophysical investigations in district Pakpattan, Punjab, Pakistan. Arab J Geosci 1:1. https://doi.org/10.1007/s12517-022-09990-8

    Article  Google Scholar 

  • Nistor MM, Rahardjo H, Satyanaga A, Hao KZ, Xiaosheng Q, Sham AWL (2020) Investigation of groundwater table distribution using borehole piezometer data interpolation: case study of Singapore. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105590

    Article  Google Scholar 

  • Nugraha GU, Nur AA, Pranantya PA, Lubis RF, Bakti H (2023) Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environ Dev Sustain. https://doi.org/10.1007/s10668-021-02103-7

    Article  Google Scholar 

  • Osenbrück K, Blendinger E, Leven C, Rügner H, Finkel M, Jakus N, Schulz H, Grathwohl P (2022) Nitrate reduction potential of a fractured Middle Triassic carbonate aquifer in Southwest Germany. Hydrogeol J. https://doi.org/10.1007/s10040-021-02418-9

    Article  Google Scholar 

  • Palmström A (2001) In-situ characterization of rocks: measurement and characterization of rock mass jointing. In: Sharma VM, Saxena KR (eds) In-situ characterization of rocks, vol 35e. Balkema Publishers

  • Paredes Tavares J (2017) Determinación del índice de vulnerabilidad de contaminación del acuífero del Valle de Toluca mediante la adecuación del método SINTACS. Tesis doctoral, Universidad Autónoma del Estado de México

  • Paredes-Bartolomé C, Flórez-Baquedano F (2001) Evaluación eficiente de la densidad de fracturación. Bol Geol Min 112(1):51–64

    Google Scholar 

  • Patoni K, Sánchez ED (2018) Estimación de la Recarga del Acuífero del Valle de Toluca, Estado de México, Mediante los Métodos Rudo y el Análisis de las Variaciones del Nivel de Agua Subterránea. Tesis licenciatura, Universidad Autónoma del Estado de México

  • Prudhomme KD, Khalil MA, Shaw GD, Speece MA, Zodrow KR, Malloy TM (2019) Integrated geophysical methods to characterize urban subsidence in Butte, Montana, U.S.A. J Appl Geophys 164:87–105. https://doi.org/10.1016/j.jappgeo.2019.03.004

    Article  Google Scholar 

  • REPDA (2021) Base de datos del Registro Público de Derechos de Agua 2021. Retrieved Dec 1, 2023, from https://app.conagua.gob.mx/ConsultaRepda.aspx

  • Rockware R (2015) Rockworks user´s guide (15). Rockware

  • Ross AL, Frohlich RK (1993) Fracture trace analysis with geographic information system “GIS.” Bull Assoc Eng Geol 30(1):87–98

    CAS  Google Scholar 

  • Rubin Y, Hubbard SS (2005) Hydrogeophysics. In: Water science and technology library.

  • Saaty R (1987) The analytic hierarchy process—what it is and how it is used. Math Model 9(5):161–176

    Article  Google Scholar 

  • Saaty TL, Vargas LG (2012) Models, methods, concepts & applications of the analytic hierarchy process, vol 175. Springer US. https://doi.org/10.1007/978-1-4614-3597-6

  • Salcedo-Sánchez ER, Ocampo-Astudillo A, Garrido-Hoyos SE, Martínez-Morales M (2020) Effects on groundwater quality of the urban area of Puebla aquifer.https://doi.org/10.1007/978-3-030-24962-5_9

  • Sánchez-Martos F, López-Martos JM, Sánchez LM, Gisbert-Gallego J, Navarro-Martínez F (2021) Influence of groundwater discharge on temporal evolution in two wetlands of an intensely anthropized area: analysis using an integrated approach. Water (switzerland). https://doi.org/10.3390/w13050697

    Article  Google Scholar 

  • Sendrós A, Himi M, Lovera R, Rivero L, Garcia-Artigas R, Urruela A, Casas A (2020) Electrical resistivity tomography monitoring of two managed aquifer recharge ponds in the alluvial aquifer of the Llobregat River (Barcelona, Spain). Near Surf Geophys 18(4):353–368. https://doi.org/10.1002/nsg.12113

    Article  Google Scholar 

  • Shaaban F, Taha AI, Othman A, Abdel-Lattif A, El-Qady G (2022) An integrated geoinformatics and hydrogeophysical approach to assess and characterize the alluvial aquifer of Wadi Dawqah, southwestern Saudi Arabia. Environ Earth Sci. https://doi.org/10.1007/s12665-022-10367-z

    Article  Google Scholar 

  • Sherif M, Sefelnasr A, Ebraheem AA, Al Mulla M, Alzaabi M, Alghafli K (2021) Spatial and temporal changes of groundwater storage in the quaternary aquifer, UAE. Water (switzerland). https://doi.org/10.3390/w13060864

    Article  Google Scholar 

  • Simon HA (1977) The new science of management decision, upper saddle river, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  • Steelman CM, Arnaud E, Pehme P, Parker BL (2018) Geophysical, geological, and hydrogeological characterization of a tributary buried bedrock valley in southern Ontario. Can J Earth Sci 55(7):641–658. https://doi.org/10.1139/cjes-2016-0120

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1991) Applied geophysics. In: Telford WM, Geldart LP, Sheriff RE (eds) (Second). Cambridge University Press

  • Terhemba BS, Obiora DN, Josiah CU, Paul O, Hilary J (2016) Aquifer vulnerability mapping in Katsina-Ala Area, Central Nigeria using integrated electrical conductivity (IEC), vol 6, no 6. www.iiste.org

  • Todd DK, Mays LW (2005) Groundwater hydrology 3rd edition. In: groundwater hydrology: conceptual and computational models

  • UNESCO (2022) Groundwater making the invisible visible

  • Valcarce-Ortega RM, Rodríguez-Miranda WR, Jorge-Díaz Z (2020) Aplicación de parámetros geoeléctricos en el estudio de la vulnerabilidad a la contaminación de las aguas subterráneas. Minería y Geología 36(4):390–403. https://www.researchgate.net/publication/346940009

  • Velasco V, Gogu R, Vázquez-Suñè E, Garriga A, Ramos E, Riera J, Alcaraz M (2013) The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment. Environ Earth Sci 68(8):2145–2162. https://doi.org/10.1007/s12665-012-1898-2

    Article  Google Scholar 

  • Venkateswara Rao B, Siva Prasad Y (2021) Evaluation of aquifer characteristics using well logging tools and pumping tests in a typical Khondalitic aquifer in the Northern parts of Eastern Ghats of India. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09286-8

    Article  Google Scholar 

  • Vojteková J, Vojtek M (2020) Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia. Geomat Nat Haz Risk 11(1):131–148. https://doi.org/10.1080/19475705.2020.1713233

    Article  Google Scholar 

  • Yevalla GMS, Blaise BBME, Seth RE, Beka ÉT, Tabod TC (2020) Constructing a 3d geological model from geophysical data for groundwater modelling and management in the Kribi-campo sedimentary sub-basin, Cameroon. Water Pract Technol 15(1):105–119. https://doi.org/10.2166/wpt.2020.004

    Article  Google Scholar 

Download references

Acknowledgements

Neri Díaz Espíritu would like to thank CONAHCYT for the scholarship received during the master´s degree period and a special thanks to the reviewers for their time.

Funding

The authors declare that no funding was received during this work.

Author information

Authors and Affiliations

Authors

Contributions

NDE: principal writer, did the methodology and prepared the figures. JLEC and MAGA wrote the multi-criteria analysis section. MVEA wrote and provided references. All authors reviewed the manuscript.

Corresponding author

Correspondence to Neri Díaz-Espíritu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

The authors confirm that all the research meets ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Espíritu, N., Expósito-Castillo, J.L., Esteller-Alberich, M.V. et al. The development of a hydrogeophysical model as a tool for groundwater risk assessment: a case study in the critical region of the Toluca Valley Aquifer, Mexico. Environ Earth Sci 83, 333 (2024). https://doi.org/10.1007/s12665-024-11602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11602-5

Keywords

Navigation