Skip to main content
Log in

Groundwater potential and aquifer characterization within Unilorin campus, Ilorin, Southwestern Nigeria, using integrated electrical parameters

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Electrical resistivity investigation was carried out at different sections of University of Ilorin main campus, Ilorin Southwestern Nigeria with the aim of evaluating groundwater potential and properties of the aquifers. Data were acquired at different locations using vertical electrical sounding (VES) method. Hydraulic conductivity, transmissivity, transverse unit resistance, longitudinal conductance, fracture contrast and reflection coefficient were estimated and used for evaluating the groundwater potential and aquifer vulnerability. The results revealed three–five geo-electric layers which correspond to the top soil, lateritic layer, weathered rock layer, fractured rock layer and the fresh basement rock. The top soil has apparent resistivity values ranging from 72.0 to 8117.3 Ωm and thickness range of 0.4–1.6 m while the last geo-electric layer is the infinite fresh basement having apparent resistivity greater than 300 Ωm. The VES curve types obtained are KH, H, A, AKH, HKH and HA with the H curve type covering about 50% of the study area. Aquifers in most part of the study areas are prone to contamination because of low protective capacity of the overburden material. Low groundwater potential covers about 56.79% of the total area and limited to northwestern corner, parts of the north, southwest and northeast. High potential for groundwater was observed at the eastern, northern and southern part of the study area covering about 12.35%. All areas that have thick overburden, high transmissivity, low fracture contrast and reflection coefficient are characterized by intense fracture. These areas are recommended for exploration for water at optimum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdullahi, N. (2014). Geoelectrical method applied to evaluation of groundwater potential and aquifer protective capacity of overburden units. British Journal of Applied Science & Technology, 4(14), 2024–2037.

    Article  Google Scholar 

  • Akinola, S. A. (2020). Hydrogeological characteristics of crystalline rock aquifers: implication on sustainable water supply in the basement complex terrain of Southwestern Nigeria. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-020-00381-z

    Article  Google Scholar 

  • Akinrinade, O. J., & Adesina, R. B. (2016). Hydro-geophysical investigation of groundwater potential and aquifer vulnerability prediction in Basement complex terrain – a case study from Akure, southwestern Nigeria. RMZ- Materials and Geoenvironment, 63, 55–66.

    Article  Google Scholar 

  • Ako, B. D. (1996). Applied geophysics. The subsurface and treasures. An inaugural lecture delivered at the Obafemi Awolowo University, Ile-Ife. Inaugural lecture series, 113, OAU Press Ltd, Ile-Ife, p. 42.

  • Alabi, A. A., & Makinde, V. (2016). Groundwater exploration in Igbo Ora, Ibarapa central local government area of Oyo State, Nigeria; using electrical resistivity method. Water Resources Journal, 26, 33–54.

    Google Scholar 

  • Annor, A. E., & Freeth, S. J. (1985). Thermotectonic evolution of the basement complex around Okene, Nigeria, with special reference to deformation mechanisms. Precambrian Research, 28, 269–281.

    Article  Google Scholar 

  • Anomohanran, O., Ofomola, M. O., & Okocha, F. O. (2017). Investigation of groundwater in parts of Ndokwa district in Nigeria using geophysical logging and electrical resistivity methods: implications for groundwater exploration. Journal of African Earth Sciences, 129, 108–116.

    Article  CAS  Google Scholar 

  • Ayolabi, E. A. (2005). Geoelectric evaluation of groundwater potential: a case study of Alagbaka primary school, Akure, Southwest Nigeria. Journal of the Geological Society of India, 66, 491–495.

    Google Scholar 

  • Badejo, A. A., Ndambuki, J. M., Kupolati, W. K., Adekunle, A. A., Taiwo, S. A., & Omole, D. O. (2015). Appraisal of access to safe drinking water in Southwest Nigeria. African Journal of Science, Technology, Innovation and Development, 7, 441–445. https://doi.org/10.1080/20421338.2015.1096669

    Article  Google Scholar 

  • Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode array. Geophysics, 54, 1031–1037.

    Article  Google Scholar 

  • Bayewu, O. O., Oloruntola, M. O., Mosuro, G. O., Laniyan, T. A., Ariyo, S. O., & Fatoba, J. O. (2018). Assessment of groundwater prospect and aquifer protective capacity using resistivity method in Olabisi Onabanjo University campus, Ago-Iwoye, Southwestern Nigeria. Journal of Astronomy and Geophysics. https://doi.org/10.1016/j.nrjag.2018.05.002

    Article  Google Scholar 

  • Bayode, S. (2000). Geophysical characterization of the Iwo migmatite gneiss/granite complex. Its significance to groundwater potential. Unpublished M. Tech Thesis, Federal University of Technology, Akure, Nigeria, p. 213.

  • Emenike, C. P., Tenebe, I. T., Omole, D. O., Igene, B. U., Oniemayin, B. I., & Omeje, M. (2017). Accessing safe drinking water in sub-saharan africa: issues and challenges in South-West Nigeria. Sustainable Cities and Society, 30, 263–272. https://doi.org/10.1016/j.scs.2017.01.005

    Article  Google Scholar 

  • George, N. J., Emah, J. B., & Ekong, U. N. (2015). Geophysical properties of hydrogeological units in parts of Niger Delta Southern Nigeria. Journal of African Earth Sciences, 105, 55–63.

    Article  Google Scholar 

  • Glain, D. L. (1979). Use of longitudinal conductance in vertical electrical soundings induced potential method for solving hydrogeolocial problems. Vestrik Mosk University Geology, 34, 74–100.

    Google Scholar 

  • Graham, M. T., Dochartaigh, B. E., Ball, D. F., & MacDonald, A. M. (2009). Using transmissivity, specific capacity and borehole yield data to assess the productivity of Scottish aquifers. Quarterly Journal of Engineering Geology and Hydrogeology, 42, 227–235.

    Article  Google Scholar 

  • Henriet, J. P. (1976). Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophysical Prospecting, 24(2), 344–353.

    Article  Google Scholar 

  • Ige, O. O., & Ajiboye, K. J. (2016). Delineation of groundwater potential zones in Tanke Area of Ilorin Southwestern Nigeria. Adamawa State University Journal of Scientific Research, 04(1), 41–51.

    Google Scholar 

  • Kransy, J. (1993). Classification of transmissivity magnitude and variation. Groundwater, 31(2), 230–236.

    Article  Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. E. O., & Taylor, R. G. (2012). Quantitative map of groundwater resource in Africa. Environmental Research Letters, 7, 024009.

    Article  Google Scholar 

  • Niwas, S., & Celik, M. (2012). Equation estimation of porosity and hydraulic conductivity of Ruhrtal Aquifer in Germany using near surface geophysics. Journal of Applied Geophysics, 84, 77–85.

    Article  Google Scholar 

  • Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Lecture notes in earth sciences, Springer, Dordrecht, pp. 96–103

  • Oladapo, M. I., Mohammed, M. Z., Adeoye, O. O., & Adetola, B. A. (2004). Geoelectrical investigation of the Ondo State Housing Corporation Estate, Ijapo Akure, Southwestern Nigeria. Journal of Mining and Geology, 40(1), 41–48.

    Article  Google Scholar 

  • Oladunjoye, M., & Jekayinfa, S. (2015). Efficacy of Hummel (modified Schlumberger) arrays of vertical electrical sounding in groundwater exploration: case study of parts of Ibadan Metropolis, Southwestern Nigeria. International Journal of Geophysics, 2015(2):1–24. https://doi.org/10.1155/2015/612303.

    Article  Google Scholar 

  • Olasehinde, P. I. (1989). Elucidating fracture pattern of the Nigerian basement complex using electrical resistivity method. Zangew, Geowiss, Left, pp. 109–120.

  • Olasehinde, P. I. (1999). An integrated geologic and geophysical exploration techniques for groundwater in the basement complex of west central part of Nigeria. Journal of Water Resources, 11, 46–49.

    Google Scholar 

  • Olasehinde, P. I., & Raji, W. O. (2007). Geophysical studies of fractures of basement rocks at University of Ilorin, Southwestern Nigeria: application to groundwater exploration. Water Resources, 17, 3–10.

    Google Scholar 

  • Olasunkanmi, N. K., Aina, A., Olatunji, S., & Bawalla, M. (2018). Seepage investigation on an existing dam using integrated geophysical methods. Journal of Environment and Earth Science, 8(5), 7. ISSN 2224-3216.

    Google Scholar 

  • Olatunji, J. A., Awojobi, M. O., Olasehinde, D. A., Akinrinmade, O. A., & Olasehinde, P. I. (2020). Aquifer characterization using evidences from hydro-geophysical data: a case study of Ilorin crystalline basement complex Southwestern Nigeria. International Journal of Research and Innovation in Applied Science IJRIAS, 5(1), 118–127. ISSN 2454-6194.

    Google Scholar 

  • Olatunji, J. A., Omonona, O. V., & Odediran, O. A. (2016). Electrical resistivity investigation of the groundwater potential in parts of Kwara state Polytechnic, Ilorin, Nigeria. Global Journal of Pure and Applied Sciences, 23, 157–166.

    Article  Google Scholar 

  • Olayinka, A. I. (1996). Non-uniqueness in the interpretation of bedrock resistivity from sounding curves and its hydrogeological implication. Water Resoures, 7(12), 49–55.

    Google Scholar 

  • Olayinka, A. I., Obere, F. O., & David, L. M., Jr. (2000). Estimation of longitudinal resistivity from Schlumberger sounding curves. Journal of Mining and Geology, 36(2), 225–242.

    Google Scholar 

  • Olorunfemi, M. O., & Fasuyi, S. A. (1993). Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences, 16, 309–317.

    Article  Google Scholar 

  • Olusegun, O. A., Adeolu, O. O., & Dolapo, F. A. (2016). Geophysical investigation for groundwater potential and aquifer protective capacity around Osun State University (UNIOSUN) College of Health Sciences. American Journal of Water Resources, 4(6), 137–143.

    Google Scholar 

  • Oluyide, P. O., Nwajide, C. S., & Oni, A. O. (1998). The geology of Ilorin with exploration on the 1:250,000 series, sheet 50 (Ilorin). Geological Survey of Nigeria Bulletin, 42, 1–84.

    Google Scholar 

  • Oyegun, R. O., Jimoh, H. I., & Iroye, K. A. (2007). Opening up the rural area in Kwara State through the provision of water resources: the policy options. Confluence Journal of Environmental Studies, 2(1), 1–14.

    Google Scholar 

  • Oyeyemi, K. D., Aizebeokhai, A. P., Ndambuki, J. M., Sanuade, O. A., Olofinnade, O. M., Adagunodo, T. A., Olaojo, A. A., & Adeyemi, G. A. (2018). Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Ota, Southwestern Nigeria. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/173/1/012028

    Article  Google Scholar 

  • Raji, W. O., & Abdulkadir, K. A. (2020). Evaluation of groundwater potential of bedrock aquifers in geological sheet 223, Ilorin, Nigeria using geo-electric sounding. Applied Water Science, 10, 220.

    Article  Google Scholar 

  • Thomas, A. H., Ushie, F. A., & Okechukwu, E. A. (2018). Hydraulic and geoelectric relationships of aquifers using vertical electrical sounding (VES) in parts of Obudu, Southern Nigeria. World Scientific News, 94(2), 261–275.

    Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed., pp. 336–555). John Wiley and Sons Inc.

    Google Scholar 

  • Vander-Velpen, B. P. A. (2004). Resist version 1.0. M.Sc. Research project ITC, Daft, The Netherlands.

  • WHO (World Health Organization). (1996). Guidelines for drinking water, vol. 1, Recommendation, Geneva, Switzerland.

  • Worthington, P. F. (1977). Influence of matrix conduction upon hydro geophysical relationships in arenaceous aquifers. Water Resources Research, 13(1), 87–92.

    Article  Google Scholar 

  • Wright, C. P. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society, London, Special Publication. https://doi.org/10.1144/GSL.SP.1992.066.01.01

  • Zohdy, A. A. R., Eaton, G. P., & Mabey, D. R. (1974). Application of surface geophysics to groundwater investigations. Techniq. Water Resources Investigations of UD Geol. Sur. Washington, p. 66.

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

OOI: conceptualization, methodology, validation, supervision, project administration, resources. OOA: software, formal analysis, investigation, writing original draft. IMO: writing—review and editing, visualization.

Corresponding author

Correspondence to I. M. Olaleye.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Human/animal rights

This article does not contain any studies with human subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ige, O.O., Adunbarin, O.O. & Olaleye, I.M. Groundwater potential and aquifer characterization within Unilorin campus, Ilorin, Southwestern Nigeria, using integrated electrical parameters. Int J Energ Water Res 6, 353–370 (2022). https://doi.org/10.1007/s42108-021-00160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-021-00160-2

Keywords

Navigation