Skip to main content
Log in

Geochemical compatibility and discrimination elements of magnetite on the eastern and western beaches of Taiwan

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Our primary purposes are to determine the genesis and the main source rocks that provide the magnetite on the beaches, as well as the compatible and discriminate elements of the studied magnetite using the multivariate diagram and principal component analysis (PCA). Optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) are primarily used to evaluate the purity of magnetite grains, and laser ablation–inductively coupled plasma–mass spectrometry is primarily used to determine the chemical composition of magnetite. In this study, two types of magnetite were distinguished, namely magmatic magnetite and hydrothermal magnetite. To determine the compatible and discriminant variables, three steps were performed. In the first step, the number of variables was reduced using a multivariate diagram. The results revealed that Zn, P, Ca, Cr, Cu, Na, and K, and Fe, Mg, Al, Ti, V, Mn, Co, Sc, Ni, Ga, Zr, Nb, and Sn served as compatible variables in magmatic and hydrothermal magnetite, respectively. In the second step, box-and-whisker plots, hierarchical clustering, and variable importance in projection (VIP) plots were used to identify discriminant variables based on the aforementioned compatible elements. The results indicated that in both hydrothermal and magmatic magnetite, Fe, Al, Ti, Mg, Mn, V, and Zn served as highly discriminant variables, while Zr, Sn, Sc, and Nb served as poorly discriminant variables. Other elements such as Co, Cr, Cu, Ca, Ga, Ni, K, and Na exhibited varying discriminant values. In the third step, the discriminant variables determined in the second step were arranged using the ranking model of PCA for each study sample. In conclusion, multivariate plots, box-and-whisker plots, VIP plots, and PCA are useful tools for determining the compatible and discriminant elements of magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

All data are attached at the Supplementary file.

Code availability

Not applicable.

References

  • Balan E, De Villiers JPR, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Miner 91:953–956

    Article  Google Scholar 

  • Barrier E, Angelier J (1986) Active collision in eastern Taiwan: the coastal range. Tectonophysics 125(1–3):39–72. https://doi.org/10.1016/0040-1951(86)90006-5

    Article  Google Scholar 

  • Bosum W, Burton GD, Han SH, Kind EG, Schreiber A, Tang CH (1970) Aeromagnetic survey of offshore Taiwan. Tech Bull CCOP ECAFE U N 3:1–34

    Google Scholar 

  • Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide and its application to mineral exploration. J Geochem Explor 145:64–81

    Article  Google Scholar 

  • Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: Taking the magic away. J Chemometrics 28:213–225

    Article  Google Scholar 

  • Brown D, Alvarez-Marron J, Camanni G, Biete C, Kuo-Chen H, Wu Y-M (2022) Structure of the south-central Taiwan fold-and-thrust belt: Testing the viability of the model. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2022.104094

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Chai BH (1972) Structure and tectonic evolution of Taiwan. Am J Sci 272:389–422

    Article  Google Scholar 

  • Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Sci Rev 141:56–81

    Article  Google Scholar 

  • Chen WT, Zhou M-F, Zhao T-P (2013) Differentiation of nelsonitic magmas in the formation of the ~1.74 Ga Damiao Fe–Ti–P ore deposit, North China. Contrib Mineral Petrol 165:1341–1362

    Article  Google Scholar 

  • Chen W, Ying Y-C, Bai T, Zhang J-J, Jiang S-Y, Zhao K-D, Shin D, Kynicky J (2019) In situ major and trace element analysis of magnetite from carbonatite-related complexes: implications for petrogenesis and ore genesis. Ore Geol Rev, S016913681830163X–. https://doi.org/10.1016/j.oregeorev.2019.01.029

  • Chong IG, Jun CH (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78:103–112

    Article  Google Scholar 

  • Chung S-L, Sun S-S (1992) A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth Plant Sci Lett 109:133–145

    Article  Google Scholar 

  • Chung S-L, Sun S-S, Tu K, Chen C-H, Lee C-Y (1994) Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem Geol 112:1–20

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol Rev 24:315–370

    Article  Google Scholar 

  • Covey M (1986) The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basin. In Allen, P.A. and Homewood, P., editors, Foreland Basins. Int Assoc Sedimentol Spec Publ 8:77–90

    Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in the trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796

    Article  Google Scholar 

  • Deditius AP, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Miner Petrol 173:46

    Article  Google Scholar 

  • Delcaillau B, Deffontaines B, Floissac L, Angelier J, Deramond J, Souquet P, Chu H-T, Lee J-F (1998) Morphotectonic evidence from lateral propagation of an active frontal fold, Pakuashan Anticline, Foothills of Taiwan. Geomorphology 24:263–290

    Article  Google Scholar 

  • Duparc Q, Dare SAS, Cousineau PA, Goutier J (2016) Magnetite chemistry as a provenance indicator in Archean metamorphosed sedimentary rocks. J Sediment Res 86(5):542–563

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46:319–335

    Article  Google Scholar 

  • Ernst WG (1983) Mineral paragenesis in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. J Metamorph Geol 1(1983):305–329

    Article  Google Scholar 

  • Farrés M, Platikanov S, Tsakovski S, Tauler R (2015) Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom 29(10):528–536. https://doi.org/10.1002/cem.2736

    Article  Google Scholar 

  • Floyd PA, Winchester JA (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem Geol 21:291–306

    Article  Google Scholar 

  • Ghose J, Hallam GC, Read DA (1977) A magnetic study of FeGa2O4: C: solid state physics. J Phys 10:1051

    Google Scholar 

  • Hemley JJ, Hunt JP (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; II. Some general geologic applications. Econ Geol 87:23–43

    Article  Google Scholar 

  • Ho CS (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics 125(1–3):1–16. https://doi.org/10.1016/0040-1951(86)90004-1

    Article  Google Scholar 

  • Ho C-S (1988) An introduction to the geology of Taiwan: explanatory text of the geological map of Taiwan. Central Geol. Sur, Taipei, Taiwan

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 25:417–441

    Article  Google Scholar 

  • Hu H, Lentz D, Li J-W, McCarron T, Zhao X-F, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8

    Article  Google Scholar 

  • Hu X, Chen H, Beaudoin G, Zhang Y (2020) Textural and compositional evolution of iron oxides at Mina Justa (Peru): implications for mushketovite and formation of IOCG deposits. Am Miner 105:397–408

    Google Scholar 

  • Huang XW, Zhou MF, Qi L, Gao JF, Wang YW (2013) Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic–hydrothermal Fe deposit, NW China. Miner Depos 48:925–946

    Article  Google Scholar 

  • Huang X-W, Qi L, Meng Y-M (2014) Trace element geochemistry of magnetite from the Fe (-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China. Acta Geol Sin 88:176–195

    Article  Google Scholar 

  • Huang X-W, Gao J-F, Qi L, Zhou M-F (2015a) In-situ LA-ICPMS trace elemental analyses of magnetite and Re-Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geol Rev 65:900–916

    Article  Google Scholar 

  • Huang X-W, Zhou M-F, Qiu Y-Z, Qi L (2015b) In-situ LA-ICPMS trace elemental analyses of magnetite: the Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol Rev 65:884–899

    Article  Google Scholar 

  • Huang X-W, Gao J-F, Qi L, Meng Y-M, Wang Y-C, Dai Z-H (2016) In-situ LA-ICP-MS trace elements analysis of magnetite: the Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China. Ore Geol Rev 72:746–759

    Article  Google Scholar 

  • Huang L, Geng W, Sun Z (2018a) Origin of the serpentinites in the Lichi mélange, eastern Taiwan, China: implication from petrology and geochronology. China Geol 1(4):477–484. https://doi.org/10.31035/cg2018070

    Article  Google Scholar 

  • Huang X-W, Zhou M-F, Beaudoin G, Gao J-F, Qi L, Lyu C (2018b) Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Miner Deposita 53:1039–1060

    Article  Google Scholar 

  • Huang X-W, Sappin A-A, Boutroy É, Beaudoin G, Makvandi S (2019) Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: relationship to deposit subtypes and magmatic affinity. Econ Geol 114(5):917–952

    Article  Google Scholar 

  • Huang C-Y, Shyu C-T, Lin SB, Lee TQ, Sheu DD (1992) Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late neogene evolution of the coastal range. 107(3):183–212. https://doi.org/10.1016/0025-3227(92)90167-g

  • Jahn B-M, Martineau F, Peucat JJ, Cornichet J (1986) Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance. Tectonophysics 125(1986):103–124

    Article  Google Scholar 

  • Jahn B-M, Chi W-R, Yui T-F (1992) A late Permian formation of Taiwan marbles from Chia-Li well no.1: Pb-Pb isochron and Sr isotopic evidence, and its regional geological significance. J Geol Soc China 35:193–218

    Google Scholar 

  • Jiao J, Han F, Zhao L, Duan J, Wang M (2019) Magnetite Geochemistry of the Jinchuan Ni-Cu-PGE Deposit, NW China: Implication for Its Ore-Forming Processes. Minerals (MDPI) 9:593. https://doi.org/10.3390/min9100593

    Article  Google Scholar 

  • Keyser W, Tsai C-H, Iizuka Y, Oberhänsli R, Ernst WG (2016) High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics 692:191–202

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Walle M, Heinrich CA, Holtz F, Munizaga R (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Article  Google Scholar 

  • Lan C-Y, Lee C-S, Yui T-F, Chu H-T, Jahn B-M (2008) The tectono-thermal events of Taiwan and their relationaship with SE China. Terr Atmos Ocean Sci 19(2008):257–278

    Article  Google Scholar 

  • Le Béon M, Suppe J, Jaiswal MK, Chen Y-G, Ustaszewski ME (2014) Deciphering cumulative fault slip vectors from fold scarps: relationships between long-term and coseismic deformations in central Western Taiwan. J Geophys Res Solid Earth 119(7):5943–5978. https://doi.org/10.1002/2013JB010794

    Article  Google Scholar 

  • Lin AT, Watts AB (2002) Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. J Geophys Res 107:ETG2-1 (2–19)

    Article  Google Scholar 

  • Lin AT, Yang CC, Wang MH, Wu JC (2021) Oligocene-Miocene sequence stratigraphy in the northern margin of the South China Sea: an example from Taiwan. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2021.104765

    Article  Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. Rev Mineral 3:L1–L60

    Google Scholar 

  • Lo C-H, Onstott TC (1995) Rejuvenation of K-Ar systems for minerals in the Taiwan mountain belt. Earth Planet Sci Lett 131(1995):71–98

    Article  Google Scholar 

  • Maier WD, Barnes SJ (1996) Unusually high concentrations of magnetite at Caraiba and other Cu-sulfide deposits in the Curaca Valley, Bahia, Brazil. Can Mineral 34(4):717–731

    Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C (2016a) Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol Rev 72:60–85

    Article  Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016b) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408

    Article  Google Scholar 

  • Makvandi S, Beaudoin G, McClenaghan MB, Quirt D (2017) Geochemistry of magnetite and hematite from unmineralized bedrock and local till at the Kiggavik uranium deposit: implications for sediment provenance. J Geochem Explor 183:1–21

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2019) The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the European Alps, Taiwan and the Himalayas. Earth-Sci Rev 10:10. https://doi.org/10.1016/j.earscirev.2019.103074

    Article  Google Scholar 

  • McIntire WL (1963) Trace element partition coefficients—a review of theory and applications to geology. Geochim Cosmochim Acta 27:1209–1264

    Article  Google Scholar 

  • Middelburg JJ, van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Mishra SP, Sarkar U, Taraphder S, Datta S, Swain DP, Saikhom R, Panda S, Laishram M (2017) Multivariate Statistical Data Analysis- Principal Component Analysis (PCA). Int J Livestock Res 7(5):60–78

    Google Scholar 

  • Mitwally EMA, Yu B-S (2022) Geochemistry of magnetite in beach sands, stream sediments, and in situ magnetites in surrounding rocks at north Taiwan island. Acta Geochim. https://doi.org/10.1007/s11631-021-00521-y

    Article  Google Scholar 

  • Morton AC (1991) Geochemical studies of detrital heavy minerals and their application to provenance research. In: Morton AC, Todds SP, Haughton PDW (eds) Developments in sedimentary provenance studies: geological society of london, Special Publication, vol 57, p. 31–45

  • Mouthereau F, Lacombe O, Deffontaines B, Angelier J (1999) Quaternary transfer faulting and belt front deformation at Pakuashan (Western Taiwan). Tectonics 18(2):215–230. https://doi.org/10.1029/1998TC900025

    Article  Google Scholar 

  • Mysen B (2012) High-pressure and high-temperature titanium solution mechanisms in silicate-saturated aqueous fluids and hydrous silicate melts. Am Miner 97(7):1241–1251

    Article  Google Scholar 

  • Nadoll P, Koenig AE (2011) LA-ICP-MS of magnetite: methods and reference materials. J Anal Spectrom 26:1872–1877

    Article  Google Scholar 

  • Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic belt supergroup, United States. Econ Geol 107:1275–1292

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Nadoll P, Mauk JL, Leveille RA, Koenig AE (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner Deposita 50:493–551

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis M, Higgins MD, Liégeois JP, Vander Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51:1203–1236

    Article  Google Scholar 

  • Nielsen RL, Forsythe LM, Gallahan WE, Fisk MR (1994) Major and trace element magnetite–melt equilibria. Chem Geol 117:167–191

    Article  Google Scholar 

  • Nielsen RL, Beard JS (2000) Magnetite-melt HFSE partitioning. Chem Geol 164:21–34

    Article  Google Scholar 

  • O’Neill HSC, Navrotsky A (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mineral 69:733–753

    Google Scholar 

  • Page BM, Suppe J (1981) The Pliocene Lichi mélange of Taiwan: its plate tectonic and olistostromal origin. Am J Sci 281:193–227

    Article  Google Scholar 

  • Pang K-N, Zhou M-F, Lindsley D, Zhao D, Malpas J (2007) Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. J Petrol 49(2):295–313

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal Atomic Spectrometry 26:2508–2518

    Article  Google Scholar 

  • Pisiak LK, Canil D, Lacourse T, Plouffe A, Ferbey T (2017) Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in Till near the Mount Polley Cu-Au Deposit, British Columbia, Canada. Econ Geol 112(4):919–940

    Article  Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38:323–326

    Article  Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction- induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900

    Article  Google Scholar 

  • Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni Co, and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chem Geol 227:1–25

    Article  Google Scholar 

  • Saporta G, Niang N (2009) Principal component analysis: application to statistical process control. In: Govaert G (ed) Data Analysis. John Wiley & Sons, London, pp 1–23

    Google Scholar 

  • Simoes M, Avouac J-P, Chen Y-G (2007a) Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan. J Geophys Res 112:B03S10. https://doi.org/10.1029/2005JB004200

    Article  Google Scholar 

  • Simoes M, Avouac JP, Chen Y-G, Singhvi AK, Wang C-Y, Jaiswal M, Chan Y-C, Bernard S (2007b) Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: shortening rate and age of folding inception. J Geophys Res 112:B03S14. https://doi.org/10.1029/2005JB004198

    Article  Google Scholar 

  • Simoes M, Chen Y-G, Shinde DP, Singhvi AK (2014) Lateral variations in the long-term slip rate of the Chelungpu fault, Central Taiwan, from the analysis of deformed fluvial terraces. J Geophys Res Solid Earth 119:3740–3766. https://doi.org/10.1002/2013JB010057

    Article  Google Scholar 

  • Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique: SEG 2006: Wealth Creation in the Minerals Industry. Society of Economic Geologists, Keystone, Colorado, pp 14–16

    Google Scholar 

  • Stanley RS, Hill LB, Chang HC, Hu HN (1981) A transect through the metamorphic core of the central mountains, southern Taiwan. Mem Geol Soc China 4(1981):443–473

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Teng LS (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183:57–76

    Article  Google Scholar 

  • Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene, and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  Google Scholar 

  • Velasco F, Tornos F, Hanchar JM (2016) Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366. https://doi.org/10.1016/j.oregeorev.2016.06.007

  • Wang C-Y, Kuo S-Y, Shyu W-L, Hsiao J-W (2003) Investigating near-surface structures under the Changhua fault, west-central Taiwan, by the reflection seismic method. Terr Atmos Ocean Sci 14(3):343–367

    Article  Google Scholar 

  • Waychunas GA (1991) Crystal chemistry of oxides and oxyhydroxides. Rev Mineral 25:11–61

    Google Scholar 

  • Wold S, Sjöströma M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  Google Scholar 

  • Wood BJ, Nell J, Woodland AB (1991) Macroscopic and microscopic thermodynamic properties of oxides. Rev Mineral 25:265–302

    Google Scholar 

  • Yu H-S, Chou Y-W (2001) Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics 333:277–291

    Article  Google Scholar 

  • Yue L-F, Suppe J, Hung J-H (2011) Two contrasting kinematic styles of active folding above thrust ramps, Western Taiwan. In: McClay K, Shaw J, Suppe J (eds) Thrust Fault-Related Folding: AAPG Memoir, vol. 94. AAPG, Tulsa, Okla, pp. 153–186. https://doi.org/10.1306/13251337m943431

  • Zhang Y, Hollings P, Shao Y, Li D, Chen H, Li H (2020) Magnetite texture and trace-element geochemistry fingerprint of pulsed mineralization in the Xinqiao Cu-Fe-Au deposit, Eastern China. Am Mineral 105(11):1712–1723

    Article  Google Scholar 

  • Zhao WW, Zhou M-F (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China. Ore Geol Rev 65:872–883

    Article  Google Scholar 

Download references

Acknowledgements

We thank GeoLasPro HD; Wuhan Shangpu Analytical Technology, Co., China, and Canada-Vancouver Lab (Mineral Laboratories, Bureau Veritas Commodities Canada, Ltd.) for their help in the LA–ICP–MS and ICP–MS analyses. We acknowledge constructive comments and suggestions from Wallace Academic Editing to improve the English language in this paper. We give special thanks to anonymous journal reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

EMAM: conceptualization (lead), data curation (lead), formal analysis (lead), investigation (lead), methodology (lead), writing—original draft (lead), writing—review and editing (lead); B-SY: conceptualization (supporting), investigation (supporting), methodology (supporting), project administration (lead), writing—review and editing (supporting).

Corresponding author

Correspondence to Eslam Mohammed Ali Mitwally.

Ethics declarations

Conflict of interest

Please check the following as appropriate: All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript:

Ethics approval

Not applicable.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1050 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitwally, E.M.A., Yu, BS. Geochemical compatibility and discrimination elements of magnetite on the eastern and western beaches of Taiwan. Environ Earth Sci 82, 483 (2023). https://doi.org/10.1007/s12665-023-11165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11165-x

Keywords

Navigation