Skip to main content

Advertisement

Log in

Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Yamansu Fe deposit (32 Mt at 51% Fe) in the Eastern Tianshan Orogenic Belt of NW China is hosted in early Carboniferous volcano-sedimentary rocks and spatially associated with skarn. The paragenetic sequence includes garnet-diopside (I), magnetite (II), hydrous silicate-sulfide (III), and calcite-quartz (IV) stages. Pyrite associated with magnetite has a Re-Os isochron age of 322 ± 7 Ma, which represents the timing of pyrite and, by inference, magnetite mineralization. Pyrite has δ34SVCDT values of − 2.2 to + 2.9‰, yielding δ34SH2S values of − 3.1 to 2‰, indicating the derivation of sulfur from a magmatic source. Calcite from stages II and IV has δ13CVPDB values from − 2.5 to − 1.2‰, and − 1.1 to 1.1‰, and δ18OVSMOW values from 11.8 to 12.0‰ and − 7.7 to − 5.2‰, respectively. Calculated δ13C values of fluid CO2 and water δ18O values indicate that stage II hydrothermal fluids were derived from magmatic rocks and that meteoric water mixed with the hydrothermal fluids in stage IV. Some ores contain magnetite with obvious chemical zoning composed of dark and light domains in BSE images. Dark domains have higher Mg, Al, Ca, Mn, and Ti but lower Fe and Cr contents than light domains. The chemical zoning resulted from a fluctuating fluid composition and/or physicochemical conditions (oscillatory zoning), or dissolution-precipitation (irregular zoning) via infiltration of magmatic-hydrothermal fluids diluted by late meteoric water. Iron was mainly derived from fluids similar to that in skarn deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barra F, Reich M, Selby D, Rojas P, Simon A, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os isotope approach. Ore Geol Rev 81:62–78

    Google Scholar 

  • Brenan JM, Cherniak DJ, Rose LA (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re-Os isotopic system. Earth Planet Sci Lett 180(3–4):399–413. https://doi.org/10.1016/S0012-821X(00)00165-5

    Google Scholar 

  • Che ZC, Liu HF, Liu L (1994) The formation of evolution of central Tianshan Orogenic Belt. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Chou I-M, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277(10):1296–1314. https://doi.org/10.2475/ajs.277.10.1296

    Google Scholar 

  • Ciobanu CL, Cook NJ (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol Rev 24(3–4):315–370. https://doi.org/10.1016/j.oregeorev.2003.04.002

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49(7):785–796. https://doi.org/10.1007/s00126-014-0529-0

    Google Scholar 

  • Dare SA, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral Deposita 50(5):607–617. https://doi.org/10.1007/s00126-014-0560-1

    Google Scholar 

  • Davies J (2010) Re-Os geochronology of oxide minerals. Master thesis, University of Alberta, Edmonton

  • Ding TP, Vaikiers S, Wan DF, Bai RM, Zou XQ, Li YH, Zhang QL, Bievre PD (2001) The δ33S and δ34S values and absolute 32S/33S and 32S/34S ratios of IAEA and Chinese sulfur isotope reference materials. Bull China Soc Miner Petrol Geochem 20:425–427 (in Chinese with English abstract)

    Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46(4):319–335

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391

    Google Scholar 

  • Fenner CN (1929) The crystallization of basalts. Am J Sci 18:225–253

    Google Scholar 

  • Gao ZJ, Chen JX, Lu SN (1993) Precambrian geology of northern Xinjiang. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Gao J, Li MS, Xiao XC, Tang YQ, He GQ (1998) Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics 287(1–4):213–231. https://doi.org/10.1016/S0040-1951(97)00211-4

    Google Scholar 

  • Gao J-F, Zhou M-F, Light Foot PC, Wang CY, Qi L, Sun M (2013) Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Econ Geol 108(8):1833–1848. https://doi.org/10.2113/econgeo.108.8.1833

    Google Scholar 

  • Günther T, Klemd R, Zhang X, Horn I, Weyer S (2017) In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chem Geol 453:111–127

    Google Scholar 

  • Han BF, Ji JQ, Song B, Chen LH, Li ZH (2004) SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chin Sci Bull 49:2424–2429

    Google Scholar 

  • He GQ, Li MS, Liu DQ (1994) Paleozoic crustal evolution and mineralization in Xinjiang of China. Xinjiang People’s Publishing House, Urimqi (in Chinese)

    Google Scholar 

  • Heidarian H, Lentz D, Alirezaei S, Peighambari S, Hall D (2016) Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran. Mineral Petrol 110(6):927–942

    Google Scholar 

  • Hemley JJ, Hunt JP (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; II, some general geologic applications. Econ Geol 87(1):23–43. https://doi.org/10.2113/gsecongeo.87.1.23

    Google Scholar 

  • Henriquez F, Martin RF (1978) Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Can Mineral 16:581–589

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-03377-7

    Google Scholar 

  • Hou T, Zhang Z, Pirajno F, Santosh M, Encarnacion J, Liu J, Zhao Z, Zhang L (2014a) Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: an overview. Ore Geol Rev 57:498–517. https://doi.org/10.1016/j.oregeorev.2013.08.007

    Google Scholar 

  • Hou T, Zhang Z, Santosh M, Encarnacion J, Zhu J, Luo W (2014b) Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: constraints on the metallogenesis. Ore Geol Rev 56:487–502. https://doi.org/10.1016/j.oregeorev.2013.03.008

    Google Scholar 

  • Hu H, Li J-W, Lentz D, Ren Z, Zhao X-F, Deng X-D, Hall D (2014) Dissolution–reprecipitation process of magnetite from the Chengchao iron deposit: insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geol Rev 57:393–405. https://doi.org/10.1016/j.oregeorev.2013.07.008

    Google Scholar 

  • Hu H, Lentz D, Li J-W, McCarron T, Zhao X-F, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110(1):1–8. https://doi.org/10.2113/econgeo.110.1.1

    Google Scholar 

  • Huang X-W, Qi L, Gao J-F, Zhou M-F (2013a) First reliable Re-Os ages of pyrite and stable isotope compositions of Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China. Resour Geol 63(2):166–187. https://doi.org/10.1111/rge.12003

    Google Scholar 

  • Huang X-W, Zhao X-F, Qi L, Zhou M-F (2013b) Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China. Chem Geol 347:9–19. https://doi.org/10.1016/j.chemgeo.2013.03.020

    Google Scholar 

  • Huang X-W, Zhou M-F, Qi L, Gao J-F, Wang Y-W (2013c) Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Mineral Deposita 48(8):925–946. https://doi.org/10.1007/s00126-013-0467-2

    Google Scholar 

  • Huang X, Qi L, Meng Y (2014a) Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China. Acta Geol Sin 88:176–195

    Google Scholar 

  • Huang XW, Qi L, Wang YC, Liu YY (2014b) Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China. Sci China Earth Sci 57(2):267–277. https://doi.org/10.1007/s11430-013-4660-z

    Google Scholar 

  • Huang X-W, Gao J-F, Qi L, Zhou M-F (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite and Re–Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geol Rev 65:900–916. https://doi.org/10.1016/j.oregeorev.2014.07.020

    Google Scholar 

  • Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. Am Mineral 97(1):26–37. https://doi.org/10.2138/am.2012.3864

    Google Scholar 

  • Jahn B, Wu F, Chen B (2000) Granitoids of the central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinb Earth Sci 91(1–2):181–194. https://doi.org/10.1017/S0263593300007367

    Google Scholar 

  • Ji JS, Tao HX, Zeng ZR, Yang XK, Zhang LC (1994) Geology and mineralization of the Kangurtag gold belt in Eastern Tianshan. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Jiang FZ (1983) A discussion on genetic types and metallogenic characteristics of the marine volcanic iron and/or copper deposits in China. Mineral Deps 2(4):11–18 (in Chinese with English abstract)

    Google Scholar 

  • Jiang FZ, Wang YW (2005) Marine volcanic rocks and related metallic ore deposits. Metallurgical Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Kajiwara Y (1971) Sulfur isotope study of the Kuroko-ores of the Shakanai No. l deposits, Akita Prefecture, Japan. Geochem J 4(4):157–181. https://doi.org/10.2343/geochemj.4.157

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43(7):591–594. https://doi.org/10.1130/G36650.1

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wӓlle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38. https://doi.org/10.1016/j.gca.2015.08.010

    Google Scholar 

  • Li G (2012) Iron ore deposits in the eastern Tianshan Orogenic Belt (China): the magnetite-skarn-magmatism association. PhD thesis, University of Orleans

  • Li HQ, Chen FW (2003) Isotopic geochronology of regional mineralization in Xinjiang, NW China. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Li W, Chen G, Sun S (1986) A study of the mineral paragensis of Yamansu iron deposit. Explor Nat 5:119–125 (in Chinese with English abstract)

    Google Scholar 

  • Li Y, Yang JS, Zhang J, Li TF, Chen SY, Ren YF, Xu XZ (2011) Tectonical significance of Carboniferous volcanics in eastern Tianshan. Acta Petrol Sin 27:193–209 (in Chinese with English abstract)

    Google Scholar 

  • Li HM, Ding JH, Li LX, Yao T (2014) The genesis of the skarn and the genetic type of the Yamansu iron deposit, eastern Tianshan, Xinjiang. Acta Geol Sin 88:2477–2489 (in Chinese with English abstract)

    Google Scholar 

  • Li H-M, Ding J-H, Zhang Z-C, Li L-X, Chen J, Yao T (2015) Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China: constraints on metallogenesis. J Asian Earth Sci 113:1068–1081. https://doi.org/10.1016/j.jseaes.2015.06.026

    Google Scholar 

  • Li G, Gou F, Wu C, Dong B (2017) Status of silicon in magnetite. Acta Geol Sin 91(2):731–732. https://doi.org/10.1111/1755-6724.13130

    Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Google Scholar 

  • Lu DR, Ji JS, Lv RS, Tao HX (1995) Geochemical characteristics and ore genesis of the Yamansu deposit in Xinjiang. Northwest Geol 16:15–19 (in Chinese)

    Google Scholar 

  • Ludwig KR (1980) Calculation of uncertainties of U-Pb isotope data. Earth Planet Sci Lett 46(2):212–220. https://doi.org/10.1016/0012-821X(80)90007-2

    Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex version 3.23. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication

  • Luo T, Liao Q-A, Chen J-P, Zhang X-H, Guo D-B, Hu Z-C (2012) LA-ICP-MS zircon U-Pb dating of the volcanic rocks from Yamansu Formation in the eastern Tianshan, and its geological significance. Earth Sci J Chin Univ Geosci 37:1338–1352 (in Chinese with English abstract)

    Google Scholar 

  • Ma RS, Shu LS, Sun JQ (1997) Tectonic evolution and mineralization of eastern Tianshan. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Makvandi S, Beaudoin G, McClenaghan BM, Layton-Matthews D (2015) The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: application to mineral exploration. J Geochem Explor 150:84–103. https://doi.org/10.1016/j.gexplo.2014.12.013

    Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408. https://doi.org/10.1016/j.oregeorev.2016.04.014

    Google Scholar 

  • Mao JW, Goldfarb RJ, Wang YT, Hart CJ, Wang ZL, Yang JM (2005) Late Paleozoic base and precious metal deposits, east Tianshan, Xinjiang, China: characteristics and geodynamic setting. Episodes 28:23–30

    Google Scholar 

  • Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA, Martin W (2002) Age of mineralization of the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean iron belt, based on Re-Os isotopes. Econ Geol 97(1):59–71. https://doi.org/10.2113/gsecongeo.97.1.59

    Google Scholar 

  • Mathur R, Titley S, Ruiz J, Gibbins S, Friehauf K (2005) A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg District, West Papua, Indonesia. Ore Geol Rev 26:207–226

    Google Scholar 

  • Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19:145–162

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, pp 299–336

    Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65(8):1311–1323. https://doi.org/10.1016/S0016-7037(00)00566-4

    Google Scholar 

  • Morelli RM, Creaser RA, Selby D, Kelley KD, Leach DL, King AR (2004) Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska. Econ Geol 99(7):1569–1576. https://doi.org/10.2113/gsecongeo.99.7.1569

    Google Scholar 

  • Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107(6):1275–1292. https://doi.org/10.2113/econgeo.107.6.1275

    Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52(1):1–17. https://doi.org/10.1016/0016-7037(88)90051-8

    Google Scholar 

  • Nold JL, Dudley MA, Davidson P (2014) The Southeast Missouri (USA) Proterozoic iron metallogenic province—types of deposits and genetic relationships to magnetite–apatite and iron oxide–copper–gold deposits. Ore Geol Rev 57:154–171. https://doi.org/10.1016/j.oregeorev.2013.10.002

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89(4):820–839. https://doi.org/10.2113/gsecongeo.89.4.820

    Google Scholar 

  • Nyström JO, Billström K, Henríquez F, Fallick AE, Naslund HR (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 130(4):177–188. https://doi.org/10.1080/11035890809452771

    Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67(5):551–578. https://doi.org/10.2113/gsecongeo.67.5.551

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Reviews in mineralogy, vol 16. Stable isotopes on high temperature geological process. Mine Soc Am, pp 491–559

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. Geochemistry of hydrothermal ore deposits. Wiley, New York

    Google Scholar 

  • Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50(3–4):325–346. https://doi.org/10.1016/j.jog.2010.01.018

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(5):689–708. https://doi.org/10.1180/0026461026650056

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70(1):87–124. https://doi.org/10.2138/rmg.2009.70.3

    Google Scholar 

  • Putnis A, John T (2010) Replacement processes in the Earth’s crust. Elements 6(3):159–164. https://doi.org/10.2113/gselements.6.3.159

    Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180(5):1783–1786. https://doi.org/10.1016/j.jssc.2007.03.023

    Google Scholar 

  • Qi L, Zhou M-F, Wang CY, Sun M (2007) Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochem J 41(6):407–414. https://doi.org/10.2343/geochemj.41.407

    Google Scholar 

  • Qi L, Zhou M-F, Gao J, Zhao Z (2010) An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites. J Anal At Spectrom 25(4):585–589. https://doi.org/10.1039/b919016c

    Google Scholar 

  • Qi L, Gao J-F, Zhou M-F, Hu J (2013) The design of re-usable Carius tubes for the determination of rhenium, osmium and platinum-group elements in geological samples. Geostand Geoanal Res 37(3):345–351. https://doi.org/10.1111/j.1751-908x.2012.00211.x

    Google Scholar 

  • Qin KZ, Fang TH, Wang SL, Zhu BQ, Feng YM, Yu HF, Xiu QY (2002) Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW China. Xinjiang Geol 20:302–308 (in Chinese with English abstract)

    Google Scholar 

  • Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z, Mao JW (2003) Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, northwestern China. In: Mao JW, Goldfarb RJ, Seltmann R, Wang DH, Xiao WJ, Hart CJ (eds) Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. IAGOD guidebook series 10. CERCAMS/NHM, London, pp 227–248

    Google Scholar 

  • Rangarajan R, Ghosh P (2011) Role of water contamination within the GC column of a GasBench II peripheral on the reproducibility of 18O/16O ratios in water samples. Isot Environ Health Stud 47(4):498–511. https://doi.org/10.1080/10256016.2011.631007

    Google Scholar 

  • Ray JS, Ramesh R, Pande K (1999) Carbon isotopes in Kerguelen plume-derived carbonatites: evidence for recycled inorganic carbon. Earth Planet Sci Lett 170:205–214

    Google Scholar 

  • Rhodes AL, Oreskes N, Sheets S (1999) Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Special Publication 7, Soc Econ Geol, pp 299–332

  • Schoenberg R, Nägler TF, Kramers JD (2000) Precise Os isotope ratio and Re-Os isotope dilution measurements down to the picogram level using multicollector inductively coupled plasma mass spectrometry. Int J Mass Spectrom 197(1–3):85–94. https://doi.org/10.1016/S1387-3806(99)00215-8

    Google Scholar 

  • Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, southern Brooks range, Alaska. Econ Geol 104(3):437–444. https://doi.org/10.2113/gsecongeo.104.3.437

    Google Scholar 

  • Sengör AMC, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364(6435):299–307. https://doi.org/10.1038/364299a0

    Google Scholar 

  • Shimazaki H (1998) On the occurrence of Silician magnetites. Resour Geol 48(1):23–29. https://doi.org/10.1111/j.1751-3928.1998.tb00004.x

    Google Scholar 

  • Shu LS, Charvet J, Lu HF, Laurent-Charvet S (2002) Paleozoic accretion-collision events and kinematics of deformation in the eastern part of the southern-central Tianshan belt, China. Acta Geol Sin 76:308–323

    Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Stein HJ, Morgan JW, Scherstén A (2000) Re-Os dating of low-level highly radiogenic (LLHR) sulfides: the Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events. Econ Geol 95:1657–1671

    Google Scholar 

  • Tang D, Qin K, Chen B, Mao Y, Guo H, Evans NJ (2017) Mineral chemistry and genesis of the Permian Cihai and Cinan magnetite deposits, Beishan, NW China. Ore Geol Rev 86:79–99. https://doi.org/10.1016/j.oregeorev.2017.01.019

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69(6):843–883. https://doi.org/10.2113/gsecongeo.69.6.843

    Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotope variation of C, H and S. In: Reviews in mineralogy, vol 16. Stable isotopes on high temperature geological process. Miner Soc Am, pp 185–226

  • Tong Y, Wang T, Hong DW, Han BF, Zhang JJ, Shi XJ, Wang C (2010) Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance. Acta Petrol Miner 29:619–641 (in Chinese with English abstract)

    Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430

    Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Reviews in mineralogy and geochemistry, vol 16. Stable isotopes on high temperature geological process. Miner Soc Am, pp 445–489

  • Walker RJ, Morgan JW, Naldrett AJ, Li C, Fassett JD (1991) Re-Os isotope systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Planet Sci Lett 105(4):416–429. https://doi.org/10.1016/0012-821X(91)90182-H

    Google Scholar 

  • Wang YW, Wang JB, Wang LJ, Qin QX, Peng XM, Hui WD (2005) Weiya vanadium-bearing titanomagnetite deposit in Xinjiang: a polygenetic magmatic differentiation-magmatic injection-magmatic hydrothermal deposit. Mineral Deps 24:349–360 (in Chinese with English abstract)

    Google Scholar 

  • Wang DH, Li CJ, Chen ZH, Chen SP, Xiao KY, Li HQ, Liang T (2006a) Metallogenic characteristics and direction in mineral research in east Tianshan, Xinjiang, China. Geol Bull Chin 25:910–915 (in Chinese with English abstract)

    Google Scholar 

  • Wang JB, Wang YW, He ZJ (2006b) Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains, NW China. Geol China 33:461–469 (in Chinese with English abstract)

    Google Scholar 

  • Wang YW, Wang JB, Wang LJ, Long LL (2008) Metallogenic series related to Permian mafic complex in North Xinjiang: post-collisional stage or mantle plume result? Acta Geol Sin 82:788–795

    Google Scholar 

  • Wang LS, Li HQ, Chen YC, Liu DQ (2015) Geological feature and mineralization epoch of Bailingshan iron deposit, Hami, Xinjiang, China. Mineral Deps 24:264–269 (in Chinese with English abstract)

    Google Scholar 

  • Westendorp RW, Watkinson DH, Jonasson IR (1991) Silicon-bearing zoned magnetite crystals and the evolution of hydrothermal fluids at the Ansil Cu-Zn mine, Rouyn-Noranda, Quebec. Econ Geol 86(5):1110–1114. https://doi.org/10.2113/gsecongeo.86.5.1110

    Google Scholar 

  • Whitney JA, Hemley JJ, Simon FO (1985) The concentration of iron in chloride solutions equilibrated with synthetic granitic compositions; the sulfur-free system. Econ Geol 80(2):444–460. https://doi.org/10.2113/gsecongeo.80.2.444

    Google Scholar 

  • Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the central Asian Orogenic Belt. J Geol Soc 164:31–47

    Google Scholar 

  • Wu C-Z, Lei R-X, Santosh M, Chi G-X, Gu L-X, Xie S-W (2016) Ordovician volcano–sedimentary iron deposits of the Eastern Tianshan area, Northwest China: the Tianhu example. Int Geol Rev 58(11):1398–1416. https://doi.org/10.1080/00206814.2016.1163516

    Google Scholar 

  • Xia LQ, Xu XY, Xia ZC, Li XM, Ma ZP, Wang LS (2003) Carboniferous post-collisional rift volcanism of the Tianshan Mountains, northwestern China. Acta Geol Sin 77:338–360 (in Chinese with English abstract)

    Google Scholar 

  • Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY, Zhao M (1992) Tectonic evolution of the northern Xinjiang and its adjacent regions. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am J Sci 304(4):370–395. https://doi.org/10.2475/ajs.304.4.370

    Google Scholar 

  • Xiao W, Han C, Yuan C, Sun M, Lin S, Chen H, Li Z, Li J, Sun S (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117

    Google Scholar 

  • Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ, Li XB (2012) Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the central Asian Orogenic Belt. Lithos 144–145:209–230. https://doi.org/10.1016/j.lithos.2012.03.010

    Google Scholar 

  • Xu XW, Ma TL, Sun LQ, Cai XP (2003) Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China. J Struct Geol 25(11):1901–1915. https://doi.org/10.1016/S0191-8141(03)00017-8

    Google Scholar 

  • Yan WY (1985) The characteristics of early Carboniferous volcanic island arc and mineralization in the east section of Tianshan. Xinjiang Geol 3:49–51 (in Chinese with English abstract)

    Google Scholar 

  • Yang XK, Tao HX, Luo GC, Ji JS (1996) Basic features of plate tectonics in east Tianshan of China. Xinjiang Geol 14:221–227 (in Chinese with English abstract)

    Google Scholar 

  • Yang XK, Cheng HB, Ji JS, Cheng Q, Luo GC (1999) Analysis on gold and copper ore-forming system with collision orogeny of eastern Tianshan. Geotecton Metallog 23:315–332 (in Chinese with English abstract)

    Google Scholar 

  • Yao PH, Wang KN, Dun CL, Lin ZT, Song X (1993) Records of China’s iron ore deposits. Metallurgical Industry Press, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Zhang X (1996) Geological-geochemical features of Yamansu iron deposit in Hami. Xinjiang Geol 14:170–180 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Z, Gu L, Wu C, Li W, Xi A, Wang S (2005) Zircon SHRIMP dating for the Weiya pluton, eastern Tianshan: its geological implications. Acta Geol Sin 79:481–490

    Google Scholar 

  • Zhang Z, Zhou G, Kusky TM, Yan S, Chen B, Zhao L (2009) Late Paleozoic volcanic record of the eastern Junggar terrane, Xinjiang, northwestern China: major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Res 16(2):201–215. https://doi.org/10.1016/j.gr.2009.03.004

    Google Scholar 

  • Zhang Z, Hou T, Santosh M, Li H, Li J, Zhang Z, Song X, Wang M (2014) Spatio-temporal distribution and tectonic settings of the major iron deposits in China: an overview. Ore Geol Rev 57:247–263. https://doi.org/10.1016/j.oregeorev.2013.08.021

    Google Scholar 

  • Zhang X, Klemd R, Gao J, Dong L-H, Wang X-S, Haase K, Jiang T, Qian Q (2015) Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt, Western Tianshan orogen, China. J Asian Earth Sci 113(Part 1):151–172

    Google Scholar 

  • Zheng RQ (2015) Geological feature and ore genesis of the Hongyuntan iron deposit in eastern Tianshan. China University of Geosciences (Beijing), Beijing, Xinjiang (in Chinese with English abstract)

    Google Scholar 

  • Zheng J, Mao J, Yang F, Chai F, Zhu Y (2017) Mineralogy, fluid inclusions, and isotopes of the Cihai iron deposit, eastern Tianshan, NW China: implication for hydrothermal evolution and genesis of subvolcanic rocks-hosted skarn-type deposits. Ore Geol Rev 86:404–425

    Google Scholar 

  • Zhou JY, Cui BF, Xiao HL, Chen SZ, Zhu DM (2001) Kangguertag-Huangshan collision zone of bilateral subduction and its metallogenic model and prognosis in Xinjiang, China. Volcanol Mineral Resour 22:252–263 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou MF, Michael Lesher C, Yang Z, Li J, Sun M (2004) Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: implications for the tectonic evolution of the central Asian orogenic belt. Chem Geol 209:233–257

    Google Scholar 

  • Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX, Zhang JD (2010) Geochronology, tectonic settings and mineraltion of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrol Sin 26:478–502 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

Field work was helped by staff of the Yamansu deposit. Zengsheng Li and Zhihui Dai are thanked for EPMA and LA-ICP-MS analyses, respectively. Ning An and Jing Gu are thanked for stable isotope analyses. We also thank the two editors (Bernd Lehmann and Ruizhong Hu), Ryan Mathur, and an anonymous reviewer who significantly improved the manuscript.

Funding

This work was jointly supported by grants from the National Natural Science Foundation of China (41503039 and 41673050), the Chinese 973 project (2012CB416804), and the “CAS Hundred Talents” Project to J.F. Gao (Y5CJ038000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Fu Zhou.

Additional information

Editorial handling: R. Hu

Electronic supplementary material

ESM 1

(DOCX 3052 kb)

ESM 2

(DOCX 2890 kb)

ESM 3

(DOCX 550 kb)

ESM 4

(DOCX 57 kb)

ESM 5

(DOCX 66 kb)

ESM 6

(DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XW., Zhou, MF., Beaudoin, G. et al. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Miner Deposita 53, 1039–1060 (2018). https://doi.org/10.1007/s00126-018-0794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0794-4

Keywords

Navigation