Skip to main content

Advertisement

Log in

Geochemistry of Antarctic periglacial soils from Harmony Point, Nelson Island

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Little is known about the geochemical baseline of Antarctic soils in different environments. We investigated the soil geochemistry of the two main landscape units of Harmony Point (Nelson Island, Maritime Antarctica): the coastal domain and the upper platform. Fourteen soil samples (seven in each landscape unit) were divided according to depth (hA for surface and hC for subsurface horizons) and characterized by their major, trace elements and REE concentrations. The concentration of major elements (SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO, MnO, and K2O) were determined by X-ray fluorescence, whereas trace elements were quantified by inductively coupled plasma-optical emission spectrometry (Co, Ni, As, Cd, Pb, Ba, Cr, Cu, V, Zn, and Zr) and REE by inductively coupled plasma mass spectrometry. The results showed geochemical variation with depth, either related to pedological processes (phosphatization, humification, podzolization, and cryoturbation), and parent material constitution (andesitic basalt in upper platform and mixed volcanic sediments in coastal domain). The main chemical aspects distinguishing Harmony Point soils from other Maritime Antarctic soils from the vicinity are: (i) higher CIA index; (ii) P2Oenrichment due to bird guano and enhanced pedogenesis; (iii) REE retention; (iv) enrichment in Fe2O3 and S concentrations. The REE concentration was influenced by weathering processes combined with allochthonous inputs, such as volcanic ashes and iceberg-transported granitic boulders at the coastal domain. The Harmony Point soils are little subjected to anthropic impacts, so they can be used as a basis for environmental monitoring programs in the Maritime Antarctica region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Rodrigues et al. (2019)]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abakumov E, Lupachev A, Andreev M (2017) Trace element content in soils of the King George and Elephant islands, maritime Antarctica. Chem Ecol 33(9):856–868. https://doi.org/10.1080/02757540.2017.1384821

    Article  Google Scholar 

  • Aide MT, Aide CC (2012) Rare earth elements: their importance in understanding soil genesis. Soil Sci 2012:1–12

    Google Scholar 

  • Alfaro MR, Nascimento CWA, Biondi CM, Silva YJAB et al (2018) Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. CATENA 162:317–324

    Google Scholar 

  • Alfonso J, Vasquez Y, Hernandez A, Mora A, Handt H, Sira E (2015) Geochemistry of recent lacustrine sediments from Fildes Peninsula, King George Island Maritime Antarctica. Antarctic Sci 27(5):462–471

    Google Scholar 

  • Allen CE (2005) Physical and chemical characteristics of soils forming on boulder tops, Kärkevagge, Sweden. Soil Sci Soc Am J 69:148–158

    Google Scholar 

  • Almeida ICC, Schaefer CEGR, Fernandes RBA, Oliveira FS, Pereira TTC (2021) Clay mineralogy and micropedology of phosphate-rich soils from Lions Rump, Maritime Antarctica. J South Am Earth Sci 105:102967

    Google Scholar 

  • Almeida ICC, Schaefer CEGR, Fernandes RBA, Pereira TTC, Machado JF, de Carvalho LB (2010) Chemical attributes of ornithogenic soils at Lions Rump, King George Bay, Maritime Antarctic. In: SCAR open meeting. http://www.uam.es/otros/cn-scar/4th_SCAR_Open/pdf/osc2010130.pdf. Accessed Dec 2016

  • Amaro E, Padeiro A, Mão de Ferro A, Mota AM et al (2015) Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Mar Pollut Bull 97:523–527

    Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74(2):285–297

    Google Scholar 

  • Andrade RP (2012) Geoquímica dos solos e das águas da Península Fildes e Ilha Ardley–Antártica Marítima. Ph.D. Teses Universidade Federal de Minas Gerais

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica Et Cosmoch Acta 65(3):387–406

    Google Scholar 

  • Bañón M, Justel A, Velázquez D, Quesada A (2013) Regional weather survey in Byers Peninsula, Livingston Island, South Shetland Islands Antarctica. Antarctic Sci 25(2):146–156

    Google Scholar 

  • Beyer L, Pingpank K, Wriedt G, Bölter M, (2000) Soil formation in coastal continental Antarctica (Wilkes Land). Geoderma 95:283–304

    Google Scholar 

  • Björck S, Zale R (1996) Late Holocene tephrochronology and palaeoclimate, based on lake sediments studies. In: Geomorphological map of Byers Peninsula, Linvingston Island, BAS GEOMAP Series, Sheet 5-A, British Antarctic Survey Cambridge 43–48

  • Björck S, Malmer N, Hjort C, Sandgren P, Ingolfsson O, Wallen B, Smith RIL, Jonsson BL (1991) Stratigraphic and palaeoclimate studies of a 5500-year-old moss bank on Elephant Island, Antarctica. Arct Alp Res 23:361–374

    Google Scholar 

  • Björck S, Olsson S, Ellis-Evans JC, Häkansson H, Humlum O, De Lirio JM (1996) Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 121:195–220

    Google Scholar 

  • Bockheim JG (2005) Soil endemism and its relation to soil formation theory. Geoderma 129:109–124

    Google Scholar 

  • Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica Et Cosmochima Acta 51:567–587

    Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011) An evaluation of geochemical weathering indices in loess–paleosol studies. Quat Int 240:12–21

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils weathering processes an environment. Elsevier, Amsterdam

    Google Scholar 

  • Carrasco MA, Préndez M (1991) Elemental distribution of some soils of continental Chile and the Antarctic Peninsula: projection to atmospheric pollution. Water Air Soil Pollut 57:713

    Google Scholar 

  • Compton JS, White RA, Smith M (2003) Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol 201(3–4):239–255

    Google Scholar 

  • Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim Cosmochim Acta 59(2):279–294

    Google Scholar 

  • Curry AM (2021) Paraglacial rock-slope failure following Deglaciation in Western Norway. In: Beylich A (ed) Landscapes and landforms of Norway World Geomorphological landscapes. Springer, Cham, pp 97–130

    Google Scholar 

  • Daher M, Schaefer CEGR, Thomazini A, Lima Neto E et al (2019) Ornithogenic soils on basalts from maritime Antarctica. CATENA 173:367–374

    Google Scholar 

  • Darmody RG, Thorn CE, Harder RL, Schlyter JPL, Dixon JC (2000) Weathering implications of water chemistry in an arctic-alpine environment, northern Sweden. Geomorphology 34:89–100

    Google Scholar 

  • de Neto E, L, Guerra BBM, Thomazini A, et al (2017) Soil contamination by toxic metals near an Antarctic Refuge in Robert Island, Maritime Antarctica: a monitoring strategy. Water Air Soil Pollut 228:228–266

    Google Scholar 

  • Dietzel M (2005) Impact of cyclic freezing on precipitation of silica in Me–SiO2–H2O systems and geochemical implications for cryosoils and -sediments. Chem Geol 216(1–2):79–88

    Google Scholar 

  • Dray S (2008) On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 52(4):2228–2237

    Google Scholar 

  • El-Nahhal Y, Safi M, Tubail K, Safi J (2013) Effect of treated wastewater irrigation on plant growth and soil properties in Gaza Strip Palestine. Am J Plant Sci 4(9):1736–1743

    Google Scholar 

  • El-Nahhal Y, Safi M, Safi J (2020) Salinity profile in coastal non-agricultural land in Gaza. Environ Sci Pollut Res Int 27(8):8783–8796

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10):921–924

    Google Scholar 

  • Francelino MR, Schaefer CEGR, Simas FNB et al (2011) Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. CATENA 85:194–204

    Google Scholar 

  • Galán E, Fernández-Caliani JC, Miras A, Aparicio P, Márquez MG (2007) Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Miner 42(3):341–352

    Google Scholar 

  • Geyer A, Marti A, Giralt S, Folch A (2017) Potential ash impact from Antarctic volcanoes: insights from Deception Island’s most recent eruption. Sci Rep 7:16534

    Google Scholar 

  • Goryachkin SV, Karavaeva NA, Targulian VO, Glazov MV (1999) Arctic soils: spatial distribution, zonality and transformation due to global change. Permafrost Periglac Process 10:235–250

    Google Scholar 

  • Guerra MBB, Schaefer CEGR, de Freitas RP, Simas FNB et al (2011) Heavy metals contamination in century-old manmade Technosols of Hope Bay, Antarctic Peninsula. Water Air Soil Pollut 222:91–102

    Google Scholar 

  • Hall K (2004) Evidence for freeze–thaw events and their implications for rock weathering in northern Canada. Earth Surf Process Landf 29:43–57

    Google Scholar 

  • Haus NW, Wilhelm KR, Bockheim JG, Fournelle J, Miller M (2016) A case for chemical weathering in soils of Hurd Peninsula, Livingston Island, South Shetland Islands, Antarctica. Geoderma 263:185–194

    Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61:4115–4137

    Google Scholar 

  • Heckmann T, McColl S, Morche D (2016) Retreating ice: research in pro-glacial areas matters. Earth Surf Process Landf 41:271–276

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments : reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier Science, Amsterdam

    Google Scholar 

  • Hu Z, Haneklaus S, Sparovek G, Ewald Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant Anal 37(9–10):1381–1420

    Google Scholar 

  • Kabała C, Zapart J (2012) Initial soil development and carbon accumulation on mor- aines of the rapidly retreating Wernskiold Gleacier, SW Spitsbergen, Svalbard Archipelago. Geoderma 175–176:9–20

    Google Scholar 

  • Laveuf C, Cornu S (2009) A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154:1–12

    Google Scholar 

  • Lee YI, Lim HS, Yoon HI (2004) Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochim Cosmochim Acta 68(21):4319–4333

    Google Scholar 

  • Liu X, Sun L, Li D, Wang Y (2011) Rare earth elements in the ornithogenic sediments from the Maritime Antarctic: a potential new palaeoecology proxy. Geochem J 45:15–26

    Google Scholar 

  • do Lopes DV, Schaefer CEGR, Souza JJL, Oliveira FS et al (2019) Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica. Geoderma 347:13–24

    Google Scholar 

  • Lottermoser BG (1990) Rare-earth element mineralisation within the Mt Weld carbonatite laterite, Western Australia. Lithos 24:151–167

    Google Scholar 

  • Lu Z, Cai M, Wang J, Yang H, He J (2012) Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ Monit Assess 184:7013–7021

    Google Scholar 

  • Ma YJ, Huo RK, Liu CQ (2002) Speciation and fractionation of rare earth elements in a Lateritic profile from southern China: identification of the carriers of Ce anomalies. Geochim Cosmochim Ac 66:A471–A471

    Google Scholar 

  • Machado A, Lima EF, Chemale F Jr, Liz JD, Ávila JN (2001) Química mineral de rochas vulcânicas da Península Fildes (Ilha Rei George) Antártica. Revista Brasileira Geociências 31(3):299–306

    Google Scholar 

  • Malandrino M, Abollino O, Buoso S, Casalino CE, Gasparon M et al (2009) Geochemical characterisation of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchem J 92:21–31

    Google Scholar 

  • Martínez Cortizas A, Rozas-Muñiz I, Taboada T, Toro M et al (2014) Factors controlling the geochemical composition of Limnopolar Lake sediments (Byers Peninsula, Livingston Island, South Shetland Island, Antarctica) during the last ca. 1600 years. Solid Earth 5:651–663

    Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:22–253

    Google Scholar 

  • McLennan SM, Taylor SR (2012) Geology, geochemistry and natural abundances of the rare earth elements. In: Atwood DA (ed) The rare earth elements: fundamentals and applications. Wiley, Chichester, pp 1–19

    Google Scholar 

  • Michel RFM, Schaefer CEGR, Dias L (2006) Ornithogenic Gelisols (Cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Sci Soc Am J 70:1370–1376

    Google Scholar 

  • Migaszewski ZM, Gałuszka A (2015) The characteristics, occurrence, and geochemical Behavior of rare earth elements in the environment: a review. Crit Rev Environ Sci Technol 45:429–471

    Google Scholar 

  • Mihajlovic J, Bauriegel A, Stärk H-J, Roßkopf N, Zeitz J, Milbert G, Rinklebe J (2019) Rare earth elements in soil profiles of various ecosystems across Germany. Appl Geochem 102:197–217

    Google Scholar 

  • Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE, Füreder L et al (2017) Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci 114(37):9770–9778

    Google Scholar 

  • Moura PA, Francelino MR, Schaefer CEGR, Simas FNB, Mendonça BAF (2012) Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphol (amst) 155–156:45–54

    Google Scholar 

  • Moutte J (1990) Procedure for multiacid digestion of rocks and minerals Géochimine École des Mines de Saint Etienne, France. http://www.emsefr/moutte. Acessed 12 Jun 2017

  • Navas A, Lopez-Martinez J, Casas J, Machín J, Durán JJ et al (2008) Soil characteristics on varying lithological substrates in the South Shetlands Islands, Maritime Antarctic. Geoderma 144:123–139

    Google Scholar 

  • Navas A, Oliva M, Ruiz-Fernández J, Gaspar L, Quijano L, Lizaga I (2017) Radionuclides and soil properties as indicators of glacier retreat in a recently deglaciated permafrost environment of the Maritime Antarctica. Sci Total Environ 609:192–204

    Google Scholar 

  • Navas A, Serrano E, López-Martínez J, Gaspar L, Lizaga I (2018) Interpreting environmental changes from radionuclides and soil characteristics in different landform contexts of Elephant Island (Maritime Antarctica). Land Degrad Dev 29:3141–3158

    Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210

    Google Scholar 

  • NesbittH W, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Google Scholar 

  • Nie Y, Liu X, Emslie SD (2014) Distribution and sources of rare earth elements in ornithogenic sediments from the Ross Sea region, Antarctica. Microchem J 114:247–260

    Google Scholar 

  • Oliva M, Ruiz-Fernández J, Barriendos M, Benito G, Cuadrat JM, García-Ruiz JM et al (2018) The little ice age in Iberian mountains. Earth Sci Rev 177:175–208

    Google Scholar 

  • Oliva M, Antoniades D, Serrano E, Giralt S, Liu EJ, Granados I, Pla-Rabes S, Toro M, Hong SG, Vieira G (2019) The deglaciation of Barton Peninsula (King George Island, South Shetland Islands, Antarctica) based on geomorphological evidence and lacustrine records. Polar Rec 55:177–188

    Google Scholar 

  • Olsacher J (1958) Observaciones geológicas en caleta Armonía, Isla Nelson: Islas Shetland del Sur Antártida. Contribución del Instituto Antártico Argentino, Universidad de Córdoba, Córdoba, Argentina

    Google Scholar 

  • Otero XL, Fernández S, de Pablo MA, Nizoli EC, Quesada A (2013) Plant communities as a key factor in biogeochemical processes involving micronutrients (Fe, Mn Co, and Cu) in Antarctic soils (Byers Peninsula, maritime Antarctica). Geoderma 195–196:145–154

    Google Scholar 

  • Padeiro A, Amaro E, dos Correia MM, Araújo SMF et al (2016) Trace element contamination and availability in Fildes Peninsula, King George Island, Antarctica. Environ Sci Process Impact 18:648–657

    Google Scholar 

  • Pereira TTC, Schaefer CEGR, Ker JC, Almeida CC, Almeida ICC (2013a) Micromorphological and microchemical indicators of pedogenesis in ornithogenic cryosols (gelisols) of Hope Bay, Antarctica Peninsula. Geoderma 193–194:311–322

    Google Scholar 

  • Pereira TTC, Schaefer CEGR, Ker JC, Almeida CC, Almeida ICC, Pereira AB (2013b) Genesis, mineralogy and ecological significance of ornithogenic soils from a semi-desert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma 209–210:98–109

    Google Scholar 

  • Pereira JL, Pereira P, Padeiro A, Gonçalves F, Amaro E, Leppe M et al (2017) Environmental hazard assessment of contaminated soils in Antarctica: using a structured Tier 1 approach to inform decision-making. Sci Total Environ 574:443–454

    Google Scholar 

  • Prietzel J, Prater I, Hurtarte LCC, Hrbáček F, Klysubun W, Mueller CW (2019) Site conditions and vegetation determine phosphorus and sulfur speciation in soils of Antarctica. Geochim Cosmochim Acta 236:339–362

    Google Scholar 

  • Quartino BJ (1959) Rocas eruptivas de Caleta Armonía, Isla Nelson, Shetland del Sur. Contribucion del Instituto Antartico Argentino 25: 25

  • Rakusa-Susczewski S (1993) The maritime Antarctic coastal ecosystem of Admiralty Bay Department of Antarctic Biology. Polish Academy of Sciences, Warsaw, pp 27–30

    Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change 114:527–547

    Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta 67:4411–4427

    Google Scholar 

  • Rodrigues WF, Oliveira FS, Schaefer CEGR, Leite MGP et al (2019) Soil-landscape interplays at Harmony point, Nelson Island, Maritime Antarctica: chemistry, mineralogy and classification. Geomorphology 336:77–94

    Google Scholar 

  • Sampaio GMS, Enzweiler J (2015) New ICP-MS results for trace elements in five Iron-formation reference materials. Geostand Geoanal Res 39(1):105–119

    Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metals contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194

    Google Scholar 

  • Santos IR, Fávaro DIT, Schaefer CEGR, Silva-Filho EV (2007) Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Mar Chem 107:464–474

    Google Scholar 

  • Schaefer CEGR, Simas FNB, Gilkes RJC, Mathison LMC, Albuquerque MA (2008) Micromorphology and microchemistry of selected Cryosols from Maritime Antarctica. Geoderma 144:104–115

    Google Scholar 

  • Schaefer CEGR, Pereira TTC, Ker JC, Almeida ICC, Simas FNB, Oliveira FS et al (2015) Soils and landforms at Hope Bay, Antarctic Peninsula: Formation, classification, distribution, and relationships. Soil Sci Soc Am J 79:175–184

    Google Scholar 

  • Schaefer CEGR, Pereira TTC, Almeida ICC, Michel RFM et al (2017) Penguin activity modify the thermal regime of active layer in Antarctica: a case study from Hope Bay. CATENA 149:582–591

    Google Scholar 

  • Simas F, Schaefer CEGR, Melo VF, Albuquerque-Filho MR, Michel RF, Pereira VV (2007) Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma 138:191–203

    Google Scholar 

  • Simas FNB, Schaefer CEGR, Melo VF (2008) Genesis, properties and classification of Cryosols from Admiralty Bay, maritime Antarctica. Geoderma 144:116–122

    Google Scholar 

  • Simas FNB, Schaefer CEGR, Michel RFM, Francelino MR, Bockheim JG (2015) Soils of the South Orkney and South Shetland Islands, Antarctica. In: Bockheim JG (ed) The Soils of Antarctica. Springer International Publishing, Switzerland, pp 227–273 (World Soils Book Series 3)

    Google Scholar 

  • Smykla J, Drewnik M, Szarek-Gwiazda M, Hii YS, Knap W, Emslie SD (2015) Variation in the characteristics and development of soils at Edmonson Point due to abiotic and biotic factors, northern Victoria Land, Antarctica. CATENA 132:56–67

    Google Scholar 

  • Smykla J, Szarek-Gwiazda E, Drewnik M, Knap WD, Emslie S (2018) Natural variability of major and trace elements in non-ornithogenic Gelisoils at Edmonson Point, northern Victoria Land, Antarctica. Pol Polar Res 39(1):19–50

    Google Scholar 

  • Souza JJLL, Schaefer CEGR, Abrahão WAP et al (2012) Hydrogeochemistry of sulfate-affected landscapes in Keller Peninsula, Maritime Antarctica. Geomorphology 155–156:55–61

    Google Scholar 

  • Souza KKD, Schaefer CEGR, Simas FNB, Spinola DN, de Paula MD (2014) Soil formation in Seymour Island, Weddell Sea. Antarctica. Geomorphology 225:87–99

    Google Scholar 

  • Sun LG, Xie ZQ (2001) Relics: penguin population programs. Sci Prog 84:31–44

    Google Scholar 

  • Sun LG, Xie ZQ, Zhao JL (2000) A 3000-year record of penguin populations. Nature 407:858

    Google Scholar 

  • Szymański W, Maciejowski W, Ostafin K, Ziaja W, Sobucki M (2019) Impact of parent material, vegetation cover, and site wetness on variability of soil properties in proglacial areas of small glaciers along the northeastern coast of Sørkappland (SE Spitsbergen). CATENA 183:104209. https://doi.org/10.1016/j.catena.2019.104209

    Article  Google Scholar 

  • Tatur A (1989) Ornithogenic soils of the Maritime Antarctic. Pol Polar Res 4:481–532

    Google Scholar 

  • Tatur A, Barczuk A (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 163–169

    Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17:405–417

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental crust: its composition and evolution. Blackwell, London

    Google Scholar 

  • Tedrow JCF, Ugolini FC (1966) Antarctic soils, In: Tedrow JCF (Eds) Antarctic soils and soil forming processes. Antarct Res Ser, vol 8 Am Geophys Union, Washington DC pp 161–177

  • Teixeira PC, Donagemma GK, Fontana AF, Teixeira WG (2017) Manual de métodos de análises de solo (editores técnicos), 3 edn. revisada e ampliada–Brasília, Distrito Federal: Embrapa

  • Turner J, Lachlan-Cope TA, Thomas JP, Colwell SR (1995) The synoptic origins of precipitation over the Antarctic Peninsula. Antarct Sci 7:327–337

    Google Scholar 

  • Ugolini FC (1972) Ornithogenic soils of Antarctica. In: Llano GA (Eds) Antarctic terrestrial biology. Am Geophys Union Antarct Res Ser 20:181–193

  • Ugolini FC, Bockheim JG (2008) Antarctic soil and soil formation in a changing environment: a review. Geoderma 144:1–8

    Google Scholar 

  • Wang L, Liang T (2015) Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Sci Rep 5:12483. https://doi.org/10.1038/srep12483

    Article  Google Scholar 

  • Yeo JP, Lee JI, Hur SD, Choi BG (2004) Geochemistry of volcanic rocks in Barton and Weaver peninsulas, King George Island, Antarctica: implications for arc maturity and correlation with fossilized volcanic centers. Geosci J 8(1):11–25

    Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE, Brimhall GH (2007) Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. J Geophys Res: F02013

  • Zhu R, Sun L, Yin X, Zhouqing XZ, Liu X (2005) Geochemical evidence for rapid enlargement of a gentoo penguin colony on Barton Peninsula in the maritime Antarctic. Antarct Sci 17(1):11–16

    Google Scholar 

Download references

Acknowledgements

The CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support. We are grateful to INCT da Criosfera, TERRANTAR and MARINHA DO BRASIL (PROANTAR PROGRAM) are acknowledged for financial support and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Fortes Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, W.F., de Oliveira, F.S., Schaefer, C.E.G.R. et al. Geochemistry of Antarctic periglacial soils from Harmony Point, Nelson Island. Environ Earth Sci 80, 430 (2021). https://doi.org/10.1007/s12665-021-09713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09713-4

Keywords

Navigation