Skip to main content

Advertisement

Log in

Quantification and characterization of the dynamics of spring and stream water systems in the Berchtesgaden Alps with a long-term stable isotope dataset

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The understanding of alpine groundwater dynamics and the interactions with surface stream water is crucial for water resources research and management in mountain regions. In order to characterize local spring and stream water systems, samples at 8 springs, 5 stream gauges and bulk samples of precipitation at 4 sites were regularly collected between January 2012 and January 2016 in the Berchtesgaden Alps for stable water isotope analysis. The sampled hydro-systems are characterized by very different dynamics of the stable isotope signatures. To quantify those differences, we analyzed the stable isotope time series and calculated mean transit times (MTT) and young water fractions (YWF) of the sampled systems. Based on the data analysis, two groups of spring systems could be identified: one group with relatively short MTT (and high YWF) and another group with long MTT (and low YWF). The MTT and the YWF of the sampled streams were intermediate, respectively. The reaction of the sampled spring and stream systems to precipitation input was studied by lag time analysis. The average lag times revealed the influence of snow and ice melt for the hydrology in the study region. It was not possible to determine the recharge elevation of the spring and stream systems due to a lack of altitude effect in the precipitation data. For two catchments, the influence of the spring water stable isotopic composition on the streamflow was shown, highlighting the importance of the spring water for the river network in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ANIP (2016) Austrian Network of Isotopes in Precipitation (ANIP) operated by the Austrian Federal Office for Environment. https://wasser.umweltbundesamt.at/h2odb/fivestep/abfrageQdPublic.xhtml. Accessed 22 March 2016

  • Apel R, Büttner G, Delannoy J, Krafft H, Plassmann G (2001) Groundwater Flow in Alpine Karst Aquifers and in Porous Media—Tracer Experiments in the National Park Berchtesgaden. New approches characterizing groundwater flow. In: Proceedings of the 31th international association of hydrogeologists congress, Munich, Germany, 10–14 September 2001, pp 3–7

  • Apel R, Büttner G, Krafft H, Kosak I (2005) Tracing the Karst water-investigations in the Berchtesgaden National Park. Landsch Umweltforsch 48:41–48

    Google Scholar 

  • Bhat NA, Jeelani G (2015) Delineation of the recharge areas and distinguishing the sources of karst springs in Bringi watershed, Kashmir Himalayas using hydrochemistry and environmental isotopes. J Earth Syst Sci 124(8):1667–1676

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M (2006) Karst spring responses examined by process-based modeling. Groundwater 44(6):832–836

    Article  Google Scholar 

  • Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps—sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562:59–96

    Article  Google Scholar 

  • Cantonati M, Füreder L, Gerecke R, Jüttner Cox EJ (2012) Crenic habitats hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshw Sci 31:463–480

    Article  Google Scholar 

  • Cervi F, Corsini A, Doveri M, Mussi M, Ronchetti F, Tazioli A (2015) Characterizing the recharge of fractured aquifers: a case study in a flysch rock mass of the northern apennines (Italy). In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal JC, Grant G (eds) Engineering geology for society and territory, vol 3. Springer, Cham, pp 563–567

    Google Scholar 

  • Cervi F, Ronchetti F, Doveri M, Mussi M, Marcaccio M, Tazioli A (2016) The use of stable water isotopes from rain gauges network to define the recharge areas of springs: problems and possible solutions from case studies in the northern Apennines. Geoing Min 149(3):19–26

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Delannoy JJ, Plassmann G, Apel R, Krafft H, Nedjai R (2001) Contribution speleolique a la gestion durable de un lac de montagne: tracages sur le bassin-versant du Königssee (Alpes de Berchtesgaden, Baviere, Allemagne). Karstologia 38:1–12 (in French)

    Google Scholar 

  • Einsiedl F, Maloszewski P, Stichler W (2009) Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. J Hydrol 365:113–121

    Article  Google Scholar 

  • Escher-Vetter H, Hagg W (2013) Gletscher und Permafrost. In: DWD (eds) Die deutschen Klimabeobachtungssysteme. Global Climate Observing System Report (GCOS) pp 72–73 (in German)

  • Franz H, Baier R, Gerecke R, Grab J, Hofmann G, Huber D, Konnert V, Kraller G, Kunstmann H, Künzl M, Lotz A, Strasser U, Vogel M, Warscher M (2011) Implementing the GLOCHAMORE research strategy into the biosphere reserve. National Park Berchtesgaden, Berchtesgadener Land

    Google Scholar 

  • Friedman I, Smith GI (1970) Deuterium content of snow cores from Sierra Nevada area. Science 169:467–470

    Article  Google Scholar 

  • Gerecke R, Franz H (2006) Quellen im Nationalpark Berchtesgaden. In: Nationalparkverwaltung Berchtesgaden (eds). Forschungsbericht 51 (in German)

  • GLA (1999) Grundwasseruntersuchungen im Nationalpark Berchtesgaden; Markierungsversuch Endstal/Scharitzkehl westlich des Hohen Gölls Sommer/Herbst 1999. Bayerisches Geologisches Landesamt (in German)

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151

    Article  Google Scholar 

  • Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167

    Article  Google Scholar 

  • Hager B, Foelsche U (2015) Stable isotope composition of precipitation in Austria. Austrian J Earth Sci 108:2–13

    Google Scholar 

  • Hartmann A, Kralik M, Humer F, Lange J, Weiler M (2012) Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer. Environ Earth Sci 65:2377–2389

    Article  Google Scholar 

  • Hartmann A, Barbera JA, Lange J, Andreo B, Weiler M (2013) Progress in the hydrologic simulation of time variant recharge areas of karst systems-Exemplified at a karst spring in Southern Spain. Adv Water Resour 54:149–160

    Article  Google Scholar 

  • Hermann A, Stichler A (1981) Runoff modeling using environmental isotopes. In: Proceedings of IUFRO workshop on water and nutrient simulation models, Birmensdorf, Schweiz

  • Hunt RJ, Coplen TB, Haas NL, Saad DA, Borchardt MA (2005) Investigating surface-well interaction using stable isotope ratios of water. J Hydrol 302:154–172

    Article  Google Scholar 

  • IAEA/WMO (2017) Global network of isotopes in precipitation. The GNIP database. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html. Accessed 10 Dec 2017

  • Jeelani G, Bhat NA, Shivanna K (2010) Use of δ18O tracer to identify stream and spring origins of a mountainous catchment: a case study from Liddar watershed, Western Himalaya, India. J Hydrol 393:257–264

    Article  Google Scholar 

  • Jeelani G, Kumar US, Bhat NA, Sharma S, Kumar B (2015) Variation of δ18O δD and 3H in karst springs of south Kashmir western Himalayas (India). Hydrol Process 29:522–530

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  • Kanduc T, Mori N, Kocman D, Stibilji V, Grassa F (2012) Hydrogeochemistry of Alpine Springs from north Slovenia: insights from stable isotopes. Chem Geol 300–301:40–54

    Article  Google Scholar 

  • Kirchner JW (2016) Aggregation in environmental systems—part 1: seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol Earth Syst Sci 20:279–297

    Article  Google Scholar 

  • Klappacher W (1996) Salzburger Höhlenbuch 6. Landesverein für Höhlenkunde in Salzburg. Burgfriedverlag, Salzburg, Austria (in German)

  • Klappacher W, Mais K (1975) Salzburger Höhlenbuch 1. Landesverein für Höhlenkunde in Salzburg. Burgfriedverlag, Salzburg, Austria (in German)

  • Koeniger P, Leibundgut C, Stichler W (2009) Spatial and temporal characterization of stable isotpes in river water as indicators of groundwater contribution and confirmation of modeling results; a study of the Weser river, Germany. Isot Environ Health Stud 45:289–302

    Article  Google Scholar 

  • Kosak I, Krafft H (2006) Bericht über die Markierungsversuche auf der Reiteralm 2004 und 2005. Nationalparkverwaltung, Berchtesgaden (in German)

    Google Scholar 

  • Kraller G (2008) Auswertung und Modellierung des Tracerversuchs am Hochkaltermassiv von 2001 im Nationalpark Berchtesgaden zur Bestimmung von hydraulischen Parametern des Grundwassersystems. Masterthesis Technical University of Munich (in German)

  • Kraller G, Strasser U, Franz H (2011) Effect of Alpine karst on the hydrology of the Berchtesgaden Ache basin: a comprehensive summary of karst research in the Berchtesgaden Alps. eco.mont 3:19–28

    Google Scholar 

  • Kraller G, Warscher M, Kunstmann H, Vogl S, Marke T, Strasser U (2012) Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden, Alps, Germany). Hydrol Earth Syst Sci 16:1969–1990

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. J Hydrol 57:207–231

    Article  Google Scholar 

  • Maloszewski P, Rauert W, Trimborn P, Herrmann A, Rau R (1992) Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany). J Hydrol 140:343–360

    Article  Google Scholar 

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow system in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modeling of environmental 18O and 3H isotopes. J Hydrol 256:48–59

    Article  Google Scholar 

  • Maloszewski P, Buettner G, Apel R, Krafft H, Scholz M, Wagner B (2005) Quantitative evaluation of tracer experiments in alpine karst and porous aquifers in the national park of Berchtesgaden. Landsch Umweltforsch 48:11–18

    Google Scholar 

  • Margrita R, Guizerix J, Corompt P, Gaillard B, Calmels P, Mangin A, Bakalowicz M (1983) Réflexions sur la théorie des traceurs. Applications en hydrologie isotopique. Colloque international sur l’hydrologie isotopique et la mise en valeur des ressources en eau. Vienna, IAEA—UNESCO, IAEA-SM-270/84:1-27 (in French)

  • Marke T, Strasser U, Kraller G, Warscher M, Kunstmann H, Franz H, Vogel M (2013) The Berchtesgaden National Park (Bavaria, Germany): a platform for interdisciplinary catchment research. Environ Earth Sci 69:679–694

    Article  Google Scholar 

  • McCarthy KA, McFarland WD, Wilkinson JM, White LD (1992) The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. J Hydrol 135:1–12

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563

    Article  Google Scholar 

  • Mussi M, Nanni T, Tazioli A, Vivalda PM (2017) The Mt Conero limestone ridge: the contribution of stable isotopes to the identification of the recharge area of aquifers. Ital J Geosci 136(2):186–197

    Article  Google Scholar 

  • Negrel P, Petelet-Giraud E, Barbier J, Gautier E (2003) Surface water-groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 227(3–4):248–267

    Article  Google Scholar 

  • Ogrinc N, Kanduc T, Stichler W, Vreca P (2008) Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J Hydrol 359(3–4):303–312

    Article  Google Scholar 

  • Picarro (2009) Users guide: picarro L1102-i isotopic liquid water and water vapor analyzer. https://picarro.app.box.com/shared/43ex899h91. Accessed 6 Oct 2015

  • Plassmann G (1998) Developpement et gestion durables en milieu alpin. Le cas de une ressource naturelle particulierement sensible - le eau karstique. Ph.D. thesis, Grenoble. Universite Joseph Fourier. Institut de Geographie Alpine, Laboratoire de la Montagne Alpine (in French)

  • Rossi PM, Marttila H, Jyväsjärvi J, Ala-aho P, Isokangas E, Muotka T, KlØve B (2015) Environmental conditions of boreal springs explained by capture zone characteristics. J Hydrol 531:992–1002

    Article  Google Scholar 

  • Siegenthaler U, Oeschger H (1980) Correlation of 18O in precipitation with temperature and altitude. Nature 285:314–317

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Strasser U (2008) Modelling of the mountain snow cover in the Berchtesgaden National Park. Berchtesgaden Natl. Park Res. Rep. 55, Berchtesgaden. ISSN 0172-0023

  • Tetzlaff D, Seibert J, McGuire KJ, Laudon H, Burns DA, Dunn SM, Soulsby C (2009) How does landscape structure influence catchment transit time across different geomorphic provinces? Hydrol Process 23:945–953

    Article  Google Scholar 

  • Virtanen R, Ilmonen J, Paarsivirta L, Muotka T (2009) Community concordance between bryophyte and insect assemblages in boreal springs: a broad scale study in isolated habitats. Freshw Biol 54:1651–1662

    Article  Google Scholar 

  • Vitvar T, Balderer W (1998) Estimation of mean residence time and runoff generation by stable isotope measurements in a small prealpine catchment. Appl Geochem 12:787–796

    Article  Google Scholar 

  • Viville D, Ladouche B, Bariac T (2006) Isotope hydrological study of mean transit time in the granitic Strengbach catchment (Vosges massic, France): application of the FlowPC model with modified input function. Hydrol Process 20:1737–1751

    Article  Google Scholar 

  • Warscher M, Strasser U, Kraller G, Marke T, Franz H, Kunstmann H (2013) Performance of complex snow cover descriptions in a distributed hydrological model system: a case study for the high Alpine terrain of the Berchtesgaden Alps. Water Resour Res 49:2619–2637

    Article  Google Scholar 

  • Winkler D (2005) Der Blaueisgletscher in Not. Berchtesgad Heimatkalender 2006:45–48 (in German)

    Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos GJ, Dávila LR, Delgado GH, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurðsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the rangers of the Berchtesgaden National Park who carry out the water sampling in the study area. Furthermore, we thank Allison Kolar, Jan Schmieder, and Pirmin Steiner who prepared and analyzed the water samples in the Center of Isotopes (CSI) at KIT/IMK-IFU. Technical infrastructure from TERENO is also gratefully acknowledged. Finally, we cordially acknowledge “Bayerisches Staatsministerium für Umwelt und Verbraucherschutz” (StMUV) for funding (grant number TKP01KPB-66747) the co-author Michael Warscher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Garvelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garvelmann, J., Warscher, M., Leonhardt, G. et al. Quantification and characterization of the dynamics of spring and stream water systems in the Berchtesgaden Alps with a long-term stable isotope dataset. Environ Earth Sci 76, 766 (2017). https://doi.org/10.1007/s12665-017-7107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7107-6

Keywords

Navigation