Skip to main content
Log in

Effect of the spatial variability of transmissivity on the groundwater flow and budget of the Takelsa multilayer aquifer, Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater models are vulnerable to uncertainties, especially those that are developed based on incomplete knowledge of the hydraulic parameters. Transmissivity is often the most uncertain parameter in groundwater modeling. This work evaluates the effect of the spatial variability of transmissivity on the outputs of the groundwater flow model of the Takelsa multilayer aquifer. The study was based on a combination of deterministic and stochastic modeling. Groundwater flow modeling and stochastic simulations were made using the PMWIN software (a version of MODFLOW). Initially, the groundwater flow model was developed in the steady state. The criteria used for the calibration process were based on the comparison between the observed and the simulated hydraulic level. Then, a stochastic approach was used and 100 simulations of transmissivity were performed. The simulated transmissivity values were used to recalculate the hydraulic head and the water budget of the Saouaf deep aquifer. Finally, the consequent 100 results obtained by running MODFLOW were analyzed. The results showed variations in the hydraulic head levels, but the flow direction remained the same. The impact of the spatial variability of transmissivity on the water budget shows a range of inflow and outflow rates of Saouaf aquifer, with special relevance to the sea intrusion which may cause a probable deterioration of the quality of the groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abu-Saleem A, Al-Zu’bi Y, Rimawi O, Al-Zu’bi J, Alouran N (2010) Estimation of water balance components in the Hasa Basin with GIS based WetSpass model. J Agron 9:119–125

    Article  Google Scholar 

  • Ahmed S, Marsily DG (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resour Res 23:1717–1737. doi:10.1029/WR023i009p01717

    Article  Google Scholar 

  • Al Kuisi M, El-Naqa A (2013) GIS based Spatial Groundwater Recharge estimation in the Jafr basin, Jordan –Application of WetSpass models for arid regions. Revista Mexicana de Ciencias Geológicas 30:96–109

    Google Scholar 

  • Batelaan O, De Smedt F (2001) WetSpass: a flexible, GIS based, distributed recharge methodology for regional groundwater modelling. In: Symposium proceedings “Impact of human activity on groundwater dynamics”, the Sixth IAHS Scientific Assembly, Maastricht, The Netherlands, IAHS Publ.269, pp 11–17

  • Bau AD (2012) Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization. Water Resour Manage 26:2513–2536. doi:10.1007/s11269-012-0030-4

    Article  Google Scholar 

  • Ben Alaya A, Souissi A, Tarhouni J, Ncib K (2003) Optimization of Nebhana reservoir water allocation by stochastic dynamic programming. Water Resour Manage 17:259–272

    Article  Google Scholar 

  • Ben Salem H (1992) Contribution à la connaissance de la géologie du Cap Bon: stratigraphie, tectonique et sédimentologie. Thèse 3ème cycle. Faculté des sciences de Tunis. Université de Tunis II. Tunisia

  • Besbes M (1976) Étude hydrogéologique du bassin de Moularès-Redeyef sur modèles mathématiques. Paris: Centre d’informatique géologique-École nationale des mines de Paris 6. France

  • Bouaamlat I, Larabi A, Faouzi M (2016) Hydrogeological investigation of an oasis-system aquifer in arid southeastern Morocco by development of a groundwater flow model. Hydrogeol J. doi:10.1007/s10040-016-1409-8

    Google Scholar 

  • Chaing WH, Kinzelbach W (1998) Processing modflow: a simulation system for modeling groundwater flow and pollution, p 334

  • Chenini I, Ben Mammou A (2010) Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci 36:801–817

    Article  Google Scholar 

  • Daniel MJ (1967) Etudes des répercussions d’une exploitation de durée sur un système aquifère saharien. Chronique d’hydrogéologie 11. BRGM

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15:269–280

    Article  Google Scholar 

  • DGRE (1980–2015) Situation de l’exploitation des nappes phréatiques entre, 1980 et 2015. Direction Générale des Ressources en Eau. Tunisia

  • DGRE (1981–2015) Annuaire d’exploitation des nappes profondes de 1981à 2015. Direction Générale des Ressources en Eau. Tunisia

  • DGRE (2007) Etude d’optimisation des réseaux de suivi des ressources en eau, Réseau de surveillance piézométrique et de Qualité des eaux souterraines, région Nord-Est.Direction Générale des Ressources en Eau. Tunisia

  • Ebrahimi H, Ghazavi R, Karimi H (2016) Estimation of groundwater recharge from rainfall and irrigation in an arid environment using inverse modeling approach and RS. Water Resour Manage. doi:10.1007/s11269-016-1261-6

    Google Scholar 

  • El Yaouti F, El Mandour A, Khattach D, Kaufmann O (2008) Modelling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco). J Hydro Environ Res 2:192–209. doi:10.1016/j.jher.2008.08.003

    Article  Google Scholar 

  • Ennabli M (1980) Étude hydrogéologique des aquifères du Nord-Est de la Tunisie pour une gestion intégrée des ressources en eau. Thèse de Doctorat es-sciences naturelles. University of Nice. France

  • Ghouili N, Jarraya Horriche F, Zammouri M, Benabdallah S, Farhat B (2017) Coupling WetSpass and MODFLOW for groundwater recharge assessment: case study of the Takelsa multilayer aquifer (Northeastern Tunisia). Geosci J 21:791–805. doi:10.1007/s12303-016-0070-5

    Article  Google Scholar 

  • Haddad R, Nouiri I, Alshihabi O, Mabmann J, Huber M, Laghouane A, Yahiaoui H, Tarhouni J (2013) A decision support system to manage the groundwater of the Zeuss Koutine aquifer using the WEAP-MODFLOW framework. Water Resour Manage 27:1981–2000. doi:10.1007/s11269-013-0266-7

    Article  Google Scholar 

  • Harbaugh AW, McDonald MG (1996a) User’s documentation for MODFLOW-96 an update to the U.S. geological survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-485, p 56

  • Harbaugh AW, McDonald M.G (1996b) Programmer’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model. U.S. Geological Survey Open-File Report 96-486, p 220

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) Modflow-2000 the U.S. geological survey modular ground-water model: user guide to modularization concepts and the groundwater flow Process. US Geological Survey. Reston p 121

  • Jang CS, Liu CW (2004) Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Hydrol Process 18:1333–1350

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database (http://srtm.csi.cgiar.org/)

  • Kanzari S, Hachicha M, Bouhlila R, Battle-Sales J (2012) Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (BouHajla, Kairouan)—Salinization risk of soils and aquifers. Comput Electron Agric 86:34–42

    Article  Google Scholar 

  • Kemper EK (2004) Preface groundwater-from development to management. Hydrogeol J 12:3–5. doi:10.1007/s10040-003-0305-1

    Article  Google Scholar 

  • Kerrou J, Renard P, Tarhouni J (2010) Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol J 18:1173–1190. doi:10.1007/s10040-010-0573-5

    Article  Google Scholar 

  • Kerrou J, Renard P, Cornaton F, Perrochet P (2013) Stochastic forecasts of seawater intrusion towards sustainable groundwater management: application to the Korba aquifer (Tunisia). Hydrogeol J 21:425–440. doi:10.1007/s10040-012-0911-x

    Article  Google Scholar 

  • Li W, Lu Z, Zhang D (2009) Stochastic analysis of unsaturated flow with probabilistic collocation method. Water Ressour Res 45:W08425. doi:10.1029/2008WR007530

    Google Scholar 

  • Lin YP, Lee CC, Tan YC (2000) Geostatistical approach for identification of transmissivity structure at Dulliu area in Taiwan. Environ Geol 40:111–120

    Article  Google Scholar 

  • Liu CW, Jang CS, Chen SC (2002) Three-dimensional spatial variability of hydraulic conductivity in the Choushui river alluvial fan Taiwan. Environ Geol 43:48–56

    Article  Google Scholar 

  • Matheron G (1970) La théorie des variables régionalisées et sans applications. Les cahiers du Centre de Morphologie Mathématique de Fontainebleau

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model: techniques of water-resources investigations of the United States geological survey. Book 6. Chapter A1. p 586

  • Nakaya S, Yohmei T, Koike A, Hirayama T, Yoden T, Nishigaki M (2002) Determination of anisotropy of spatial correlation structure in a three-dimensional permeability field accompanied by shallow faults. Water Resour Res 38:35(1)–35(14)

    Article  Google Scholar 

  • Nouiri I, Yitayew M, Maßmann J, Tarhouni J (2015) Multi-objective optimization tool for integrated groundwater management. Water Resour Manage. doi:10.1007/s11269-015-1122-8

    Google Scholar 

  • Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J (2001) Modeling and analysis of seawater intrusion in the coastal aquifer of eastern Cap-Bon, Tunisia. Transp Porous Media 43:3–28. doi:10.1023/A:1010600921912

    Article  Google Scholar 

  • Park C, Seo J, Lee J, Ha K, Koo MH (2014) A distributed water balance approach to groundwater recharge estimation for Jeju Volcanic Island, Korea. Geosci J 18:193–207. doi:10.1007/s12303-013-0063-6

    Article  Google Scholar 

  • Pool M, Carrera J, Alcolea A, Bocanegra ME (2015) A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. J Hydrogeol 531:214–229. doi:10.1016/j.jhydrol.2015.09.064

    Google Scholar 

  • Raul KS, Panda NS (2013) Simulation-optimization modeling for conjunctive use management under hydrological uncertainty. Water Resour Manage 27:1323–1350. doi:10.1007/s11269-012-0240-9

    Article  Google Scholar 

  • Ribeiro L (1993) Evaluating the uncertainty of leakage rates of Tejo and Sado groundwater system. Geostatistics Tróia 92:695–707. doi:10.1007/978-94-011-1739-5_55

    Article  Google Scholar 

  • Sidiropoulos P, Mylopoulos N, Loukas A (2015) Stochastic Simulation and management of an Over-Exploited aquifer using an integred modeling system. Water Resour Manage 29:929–943. doi:10.1007/s11269-014-0852-3

    Article  Google Scholar 

  • Tammal M, Kili M, El Gasmi El H, Mridekh A, El Mansouri B (2014) Modeling multi-aquifer system of Tadla basin and plateau of phosphates. Int J Innov Sci Res 6:172–180

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Wang S, Shao J, Song X, Zhang Y, Huo Z, Zhou X (2008) Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ Geol 55:1449–1462. doi:10.1007/s00254-007-1095-x

    Article  Google Scholar 

  • Xu X, Huang G, Qu Z, Pereira SL (2011) Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the Upper Yellow River Basin. Water Resour Manag 25:2035–2059. doi:10.1007/s11269-011-9793-2

    Article  Google Scholar 

  • Zammouri M, Ribeiro L (2017) Analyzing the effect of transmissivity uncertainty on the reliability of a model of the northwestern Sahara aquifer system. J Afr Earth Sc. doi:10.1016/j.jafrearsci.2017.02.034

    Google Scholar 

  • Zammouri M, Siegfried T, El-Fahem T, Kriâa S, Kinzelbach W (2007) Salinization of groundwater in the Nefzawa oases region, Tunisia: results of a regional-scale hydrogeologic approach. Hydrogeol J 15:1357–1375. doi:10.1007/s10040-007-0185-x

    Article  Google Scholar 

  • Zammouri M, Jarraya-Horriche F, Odo BO, Benabdallah S (2013) Assessment of the effect of a planned marina on groundwater quality in Enfida plain (Tunisia). Arab J Geosci 7:1187–1203. doi:10.1007/s12517-012-0814-0

    Article  Google Scholar 

  • Zghibi A, Zouhri L, Tarhouni J (2011) Groundwater modeling and marine intrusion in the semi-arid systems (Cap-Bon, Tunisia). Hydrol Process 25:1822–1836. doi:10.1002/hyp.7948

    Article  Google Scholar 

  • Zhang D (2001) Stochastic methods for flow in porous media: coping with uncertainties. Academic Press, San Diego, p 368

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers of this article for their useful comments and suggestions. Gratitude is also extended to the Resources Water Direction of Tunis (DGRE) and the Regional Direction of Agriculture and Water Resources of Nabeul (CRDA Nabeul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouili, N., Ribeiro, L., Zammouri, M. et al. Effect of the spatial variability of transmissivity on the groundwater flow and budget of the Takelsa multilayer aquifer, Tunisia. Environ Earth Sci 76, 699 (2017). https://doi.org/10.1007/s12665-017-7021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7021-y

Keywords

Navigation