Skip to main content

Advertisement

Log in

Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion

Statut des ressources en eau souterraine à Korba (Tunisie): observations et modélisation tridimensionnelle de l’intrusion d’eau de mer

Estado de los recursos de aguas subterráneas de Korba (Túnez): observaciones y modelado tridimensional de la intrusión de agua de mar

突尼斯Korba含水层地下水资源现状: 海水入侵的观测和三维模拟

Estado dos recursos hídricos subterrâneos de Korba (Tunísia): observações e modelo tridimensional da intrusão salina

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Korba aquifer is located in the east of the Cape Bon peninsula in Tunisia. A large groundwater depression has been created in the central part of the aquifer since the 1980s, due to intense groundwater pumping for irrigation. The data collected show that the situation continues to deteriorate. Consequently, seawater is continuing to invade a large part of the aquifer. To better understand the situation and try to forecast its evolution, a three-dimensional (3D) transient density-dependent groundwater model has been developed. The model building process was difficult because of data required on groundwater discharge from thousands of unmonitored private wells. To circumvent that difficulty, indirect exhaustive information including remote sensing data and the physical parameters of the aquifer have been used in a multi-linear regression framework. The resulting 3D model shows that the aquifer is over-exploited. It also shows that after 50 years of exploitation, the time needed to turn back to the natural situation would be about 150 years if the authorities would ban all exploitation now. Such an asymmetry in the time scales required to contaminate or remediate an aquifer is an important characteristic of coastal aquifers that must be taken into account in their management.

Résumé

L’aquifère de Korba est localisé à l’est de la péninsule du Cap Bon en Tunisie. Une large dépression d’eau souterraine a été créée dans la partie centrale de l’aquifère depuis les années 80 à cause d’un pompage intense des eaux souterraines, utilisées pour l’irrigation. Les données collectées montrent que la situation continue à se détériorer. En conséquence, l’eau de mer continue d’envahir une grande partie de l’aquifère. Pour mieux comprendre cette situation et essayer d’estimer l’évolution de l’intrusion, un modèle hydrogéologique tridimensionnel en régime transitoire et à densité variable a été développé. La construction du modèle a été difficile à cause du manque de données sur les pompages à partir de milliers de puits privés non contrôlés. Pour résoudre cette difficulté, l’information exhaustive indirecte incluant les données d'images satellites et les paramètres physiques de l’aquifère a été utilisée dans une analyse de régression multilinéaire. Le résultat du modèle 3D montre que l’aquifère est surexploité. Il indique aussi qu’après 50 ans d’exploitation le temps nécessaire au retour à la situation naturelle serait d’environ 150 ans dans le cas où dans le cas où les autorités interdisent toute exploitation de l’aquifère. Cette asymétrie dans l’échelle de temps nécessaire pour contaminer ou améliorer un aquifère est une importante caractéristique des aquifères côtiers qui doit être prise en compte pour leur gestion.

Resumen

El acuífero Korba está localizado en el este de la península Cape Bon en Túnez. Una gran depresión de aguas subterráneas fue creada en la parte central del acuífero desde los años 1980, debido a un bombeo intenso de aguas subterráneas para la irrigación. Los datos colectados muestran que la situación continúa deteriorándose. Consecuentemente, el agua de mar está continuamente invadiendo una gran parte del acuífero. Para entender mejor la situación y tratar de pronosticar su evolución, se desarrolló un modelo tridimensional (3D) transitorio de aguas subterráneas dependiente de la densidad. El proceso de confección del modelo fue dificultoso debido a que los datos necesarios sobre la descarga de aguas subterráneas provienen de miles de pozos privados no monitoreados. Para salvar esta dificultad, se utilizaron la información exhaustiva indirecta que incluye datos de sensores remotos y los parámetros físicos del acuífero en un marco de regresión multi-lineal. El modelo 3D resultante muestra que el acuífero es sobreexplotado. También muestra que después de 50 años de explotación, el tiempo requerido para retornar a la situación natural sería de alrededor de 150 años si las autoridades prohibieran toda la explotación ahora. Semejante asimetría en las escalas de tiempo requeridas para contaminar o remediar un acuífero constituyen una característica importante de los acuíferos costeros que deberían ser tenidos en cuenta en su manejo.

摘要

Korba含水层位于突尼斯Cape Bon半岛东部。由于1980s以来大量抽取地下水用于灌溉, 在含水层中部已形成大面积的地下水降落漏斗。收集到的资料表明形势仍持续恶化。结果, 海水继续入侵大部分含水层。为了更好地了解状况, 并尝试预测其演化, 建立了一个三维 (3D) 非稳态变密度地下水模型。模型的建立过程很困难, 因为需要从数千口的未作监测的私用井取得所需的地下水排泄量数据。为了解决这些困难, 将各种间接的信息, 包括遥感数据和含水层的物理参数纳入一个多线性回归框架中。三维模拟结果表明含水层处于超采状态。模型还显示, 在开采50后, 如果当局从现在开始全面禁止开采, 要恢复到天然状态也将需要约150年。污染和修复一个含水层的时间尺度如此不对称。这是海岸带含水层的一个重要特征, 在管理当中须作考虑。

Resumo

O aquífero de Korba está localizado na parte leste da península de Cap Bon na Tunísia. Desde 1980 que foi criada uma grande depressão piezométrica na parte central do aquífero, devido a uma intensa exploração de águas subterrâneas para a agricultura. Os dados observados mostram que a situação se continua a deteriorar. Em consequência, a água do mar continua a invadir uma grande parte do aquífero. Para melhor se compreender a situação e tentar prever a sua evolução, foi desenvolvido um modelo 3-D em regime variável em função da densidade. O processo de construção do modelo foi difícil, devido à carência de dados de milhares de furos privados, não monitorizados. Para ultrapassar esta dificuldade, toda a informação indirecta, incluindo detecção remota e parâmetros físicos do aquífero, foi utilizada para um estudo de regressão inversa multi-linear. O modelo 3-D resultante mostra que o aquífero está numa situação de sobre-exploração. Mostra também que, após 50 anos de exploração, o tempo necessário para recuperação e retorno à situação natural seria de 150 anos, mesmo que as autoridades banissem toda a exploração neste mesmo momento. Tal assimetria nas escalas temporais para contaminar o aquífero e para o recuperar constitui uma das características mais importantes dos aquíferos costeiros, a qual deve ser tomada em consideração na sua gestão.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abarca E, Carrera J, Sanchez-Vila X, Voss CI (2007) Quasi-horizontal circulation cells in 3D seawater intrusion. J Hydrol 339:118–129

    Article  Google Scholar 

  • Abbes A, Polak M (1981) La formation Saouaf dans les synclinaux de la Dakhla (Cap-Bon) et de Saouaf (Tunisie nord orientale) [The Saouaf formation in the Dakhla (Cape Bon) and Saouaf (North-east Tunisia) synclines]. Notes Serv Géol Tunisie 46:99–111

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome

  • Anderson M, Kustas W (2008) Thermal remote sensing of drought and evapotranspiration. EOS Trans Am Geophys Union 89:233–240

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–61

    Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL): 1. formulation. J Hydrol 213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL): 2. validation. J Hydrol 213:213–229

    Article  Google Scholar 

  • Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers-concepts, methods and practices. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Becker MW (2006) Potential for satellite remote sensing of ground water. Ground Water 44:306–318

    Article  Google Scholar 

  • Bensalem H (1992) Contribution à l’étude de la Géologie du Cap Bon: Stratigraphie, tectonique et sédimentologie [Contribution to the study of the geology of Cape Bon: stratigraphy, tectonic and sedimentology]. PhD Thesis, Faculté des Sciences de Tunis, Tunisia

  • Bensalem H (1995) Evolution de la Péninsule du Cap Bon (Tunisie nord-orientale) au cours du Néogène [Evolution of the Cape Bon peninsula (north-east Tunisia) during the Neogen]. Notes Serv Géol Tunisie 61:73–84

    Google Scholar 

  • Bensalem H (1998) Les formations post Saouaf des environs de Nabeul (Cap Bon) et leur équivalents off shore et en Tunisie sud atlasique [The formations post Saouaf in the vicinity of Nabeul (Cape Bon) and their equivalents off shore and in south atlasic Tunisia]. Notes Serv Géol Tunisie 64:123–128

    Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345

    Article  Google Scholar 

  • Brunner P, Hendricks Franssen HJ, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15:5–18

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222

    Article  Google Scholar 

  • Cheng AHD, Ouazar D (2003) Coastal aquifer management: monitoring, modeling, and case studies. Lewis, Boca Raton, FL

  • Coudrain-Ribstein A, Pratx B, Talbi A, Jusserand C (1998) Is the evaporation from phreatic aquifers in arid zones independent of the soil characteristics? CR Acad Sci Paris Earth Planet Sci 326:159–165

    Google Scholar 

  • CRDA (2002) Rapport d’activités Commissariat Régional au Développement Agricole de Nabeul [Activity report of the Commissariat Régional au Développement Agricole de Nabeul]. Ministère de l’Agriculture et des Ressources Hydrauliques, Tunis, Tunisia

  • Custodio E (2002) Aquifer overexploitation: What does it mean? Hydrogeol J 10:254–277

    Article  Google Scholar 

  • DGRE (1985) Rapport d’exploitation des nappes phréatiques de l’année 1985 [Report of exploitation of the groundwater of the year 1985]. Direction Générale des Ressources en Eau, Ministère de l’agriculture et des ressources hydrauliques, Tunis, Tunisia

  • DGRE (2000) Rapport d’exploitation des nappes phréatiques de l’année 2000 [Report of exploitation of the groundwater of the year 2000]. Direction Générale des Ressources en Eau, Ministère de l’Agriculture et des Ressources Hydrauliques, Tunis, Tunisia

  • Diersch HG (1996) Interactive, Graphics-Based Finite Element Simulation System FEFLOW For Modeling Groundwater Flow, Contaminant Mass and Heat Transport. WASY Institute, Berlin, Germany

  • Doherty J (1998) PEST: model independent parameter estimation, Watermark, Brisbane, Australia

  • Ennabli M (1980) Etude hydrogéologique des aquifères du nord-est de la Tunisie pour une gestion intégrée des ressources en eau [Hydrogeological study of the aquifers north-east of Tunisia for an integrated management of the water resources]. PhD Thesis, Université de Nice, France

  • Gambolati G, Putti M, Paniconi C (1999) Three-dimensional model of coupled density-dependent flow and miscible transport in groundwater. In: Bear et al (eds) Seawater intrusion in coastal aquifers: concepts, methods, and practices. Kluwer, Dordrecht, The Netherlands, pp 315–362

    Google Scholar 

  • Grava M (2005) Hydrochemical, hydrogeological, and geostatistical analysis of Eastern Cape Bon aquifer (northern Tunisia), Postgraduate Thesis, Centre d’hydrogéologie de l’Université de Neuchâtel, Switzerland

  • Hendricks Franssen JH, Brunner P, Makobo P, Kinzelbach W (2008) Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images. Water Resour Res 44, W0149. doi:10.1029/2007WR006097

  • Hichri H (2003) Annuaire hydro-pluviométrique du Cap Bon [Hydro-rainfall directory of the Cape Bon]. Ministère de l’Agriculture et des Ressources Hydrauliques, Tunis, Tunisia

  • INM (2001) Almanach [The climat]. Institut National de la Météorologie, Tunis, Tunisia. http://www.meteo.tn/ Cited August 2008

  • INS (2004) Recensement Général de la Population et de l’Habitat de 2004 [General census of population and housing 2004]. Institut National de la Statistique, Tunis, Tunisia. http://www.ins.nat.tn/. Cited August 2008

  • Käser D (2004) Etude hydrogéologique de la côte orientale du Cap Bon (Tunisie): apports de la télédétection à l’estimation du bilan hydrique [Hydrogeological study of the eastern coast of the Cape Bon (Tunisia): contributions of remote sensing to the estimation of water balance]. Postgraduate Thesis, Université de Neuchâtel, Switzerland

  • Khlaifi I (1998) Contribution à l’étude de l’intrusion marine par un modèle de transport tridimensionnel : interfaçage avec des systèmes d’information géographique [Contribution to the study of seawater intrusion by a three-dimensional transport model: interfacing with a geographic information system]. MSc Thesis, Institut National Agronomique de Tunisie, Tunisia

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  Google Scholar 

  • Mami A, Aloui T (1982) Carte des ressources en sols de la Tunisie: feuille de la Goulette [Map of soil resources in Tunisia: the Goulette sheet]. Directions des sols, Ministère de l’Agriculture et des Ressources Hydrauliques, Tunis, Tunisia

  • Milnes E, Renard P (2004) The problem of salt recycling and seawater intrusion in coastal irrigated plains: an example from the Kiti aquifer (southern Cyprus). J Hydrol 288:327–343

    Article  Google Scholar 

  • Nazoumou Y (2002) Impact des barrages sur la recharge des nappes en zone aride : etude par modélisation numérique sur le cas de Kairouan (Tunisie centrale) [Impact of dams on aquifers recharge in arid zone: numerical modelling study at Kairouan (Central Tunisia)]. PhD Thesis, Ecole Nationale d’Ingénieurs de Tunis, Tunisia

  • Oueslati A (1994) Les côtes de la Tunisie. Recherche sur leur évolution au Quaternaire [The coasts of Tunisia: research on their evolution during the Quaternary]. Imprimerie officielle de la République Tunisienne, Tunis, Tunisia

  • Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J (2001) Modeling and analysis of seawater intrusion in the coastal aquifer of eastern Cap-Bon, Tunisia. Transp Porous Med 43:3–28

    Article  Google Scholar 

  • Parodi GN (2002) AHVRR hydrological analysis system: algorithms and theory, Version 1.3. WRES-ITC, Enschede,The Netherlands

  • Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth, Part B Hydrol Oceans Atmos 25:147–157

    Article  Google Scholar 

  • Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35:461–490

    Article  Google Scholar 

  • Steenhuis TS, Van der Molen WH (1986) The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J Hydrol 84:221–229

    Article  Google Scholar 

  • Tarhouni J, Jemai S, Walraevens K, Rekaya M (1996) Caractérisation de l’aquifère côtier de Korba au Cap Bon (Tunisie) [Characterization of the Korba coastal aquifer in the Cape Bon (Tunisia)]. Progress report 95–96 for AVI-73 EC Project, EC, Brussels

  • Winsauer WO, Shearin HM, Masson PH, Williams M (1952) Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull 36:253–277

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Swiss National Science Foundation under Grants: 207020-110017 and PP002-106557. Additional funds were provided by the Swiss Agency for Development and Cooperation and by the Institut National Agronomique de Tunisie. The authors thank G. de Marsily, R. Ababou, P. Perrochet, J. Carrera, R. Bouhlila and A. Alcolea for providing valuable suggestions on the manuscript. The authors are also grateful to Naceur Oueslati from CRDA Nabeul, and Emna Trabelsi from INAT who kindly provided the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaouher Kerrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrou, J., Renard, P. & Tarhouni, J. Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol J 18, 1173–1190 (2010). https://doi.org/10.1007/s10040-010-0573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0573-5

Keywords

Navigation