Skip to main content

Advertisement

Log in

Implications of shearing on drainage network development in Achankovil Shear Zone, South India: insights from DEM-based geomorphic indices and longitudinal profile analysis

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Achankovil Shear Zone (AKSZ) in the Southern Granulite Terrain separates the Trivandrum block from the Madurai block. Various geomorphic indices and longitudinal profiles of the river systems in the AKSZ, viz., Achankovil river basin (ARB) and Kallada river basin (KRB), were derived from SRTM DEM to decipher the influence of shearing and deformation on the regional drainage evolution. Although hypsometric analysis of the basins implies old stage of geomorphic evolution, horizontal shifts in the channel plan form are restricted (except in the Tertiary sediments), suggesting the structural controls over the drainage organization, which are also supported by the high topographic sinuosity. The transverse topographic symmetry (T) vectors indicate a southwesterly migration for the upstream channel segments of both ARB and KRB, while the northwesterly migration of the downstream courses can be correlated with the dextral shearing of the AKSZ. Even though the shear zone is considered to be the block boundary between the charnockite of Madurai and khondalite of Trivandrum blocks, the moderate to low profile concavity (θ) values are probably the result of suppressing the effect of the block–boundary interactions by shearing and denudation. The study proposes a model for evolution of drainage network in the AKSZ, where the mainstream of the basins was initially developed along NE–SW direction, and later the upstream and midstream segments were reoriented to the NW–SE trend as a result of intense shearing. Overall, the present study emphasizes the significance of geomorphic indices and longitudinal profile analysis to understand the role of shearing and deformation on drainage evolution in transcrustal shear zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ambili V, Narayana AC (2014) Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology 217:37–47. doi:10.1016/j.geomorph.2014.04.013

    Article  Google Scholar 

  • Braun I, Montel J-M, Nicollet C (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146(1–2):65–85. doi:10.1016/S0009-2541(98)00005-9

    Article  Google Scholar 

  • Brookfield ME (1998) The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology 22(3–4):285–312. doi:10.1016/S0169-555X(97)00082-2

    Article  Google Scholar 

  • Bruckner H (1989) Late Quaternary shorelines in India. In: Scott DB, Pirazzoli PA, Honig CA (eds) Late Quaternary sea level correlation and applications, vol 256. NATO ASI series (Series C: mathematical and physical sciences). Springer, Dordrecht, pp 169–194. doi:10.1007/978-94-009-0873-4_9

    Chapter  Google Scholar 

  • Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock Fault California. In: Doehring DO (ed) Geomorphology in arid regions: proceedings of the 8th annual geomorphology symposium, State University of New York at Binghamton, New York, pp 115–138

  • Burbank DW, Anderson RS (2012) Tectonic geomorphology, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Chen Y-C, Sung Q, Cheng K-Y (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56(1–2):109–137. doi:10.1016/S0169-555X(03)00059-X

    Article  Google Scholar 

  • Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res 25(1):190–203. doi:10.1016/j.gr.2013.01.002

    Article  Google Scholar 

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106(5):571–581. doi:10.1130/0016-7606(1994)106<0571:AODBSA>2.3.CO;2

    Article  Google Scholar 

  • D’Cruz E, Nair PKR, Prasannakumar V (2000) Palghat gap: a dextral shear zone from the South Indian Granulite Terrain. Gondwana Res 3(1):21–31. doi:10.1016/S1342-937X(05)70054-X

    Article  Google Scholar 

  • Dhanya V, Renoy G (2015) Drainage development in Achankovil Shear Zone, South India. Curr Sci 108(6):1151–1157

    Google Scholar 

  • Dominguez-Gonzalez L, Andreani L, Stanek KP, Gloaguen R (2015) Geomorpho-tectonic evolution of the Jamaican restraining bend. Geomorphology 228:320–334. doi:10.1016/j.geomorph.2014.09.019

    Article  Google Scholar 

  • Drury SA, Harris NBW, Holt RW, Reeves-Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92(1):3–20. doi:10.1086/628831

    Article  Google Scholar 

  • Figueroa AM, Knott JR (2010) Tectonic geomorphology of the southern Sierra Nevada Mountains (California): evidence for uplift and basin formation. Geomorphology 123(1–2):34–45. doi:10.1016/j.geomorph.2010.06.009

    Article  Google Scholar 

  • Flint JJ (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10(5):969–973. doi:10.1029/WR010i005p00969

    Article  Google Scholar 

  • Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23(3):TC3006. doi:10.1029/2002TC001444

    Article  Google Scholar 

  • Gravelius H (1914) Grundriβ der gesamten Gewasserkunde. In: Band I (ed) Fluβkunde (Compendium of Hydrology, vol. I. Rivers, in German). Goschen, Berlin

    Google Scholar 

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. J Res US Geol Surv 1(4):421–429

    Google Scholar 

  • Harlin JM (1978) Statistical moments of the hypsometric curve and its density function. Math Geol 10(1):59–72. doi:10.1007/BF01033300

    Article  Google Scholar 

  • Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13(12):Q12004. doi:10.1029/2012GC004370

    Article  Google Scholar 

  • Hayakawa YS, Oguchi T (2006) DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology 78(1–2):90–106. doi:10.1016/j.geomorph.2006.01.018

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370. doi:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • John B, Rajendran CP (2009) Evidence of episodic brittle faulting in the cratonic part of the Peninsular India and its implications for seismic hazard in slow deforming regions. Tectonophysics 471(3–4):240–252. doi:10.1016/j.tecto.2009.02.022

    Article  Google Scholar 

  • Kale VS, Sengupta S, Achyuthan H, Jaiswal MK (2014) Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology 227:153–165. doi:10.1016/j.geomorph.2013.07.027

    Article  Google Scholar 

  • Keller EA, Pinter N (1996) Active tectonics: earthquakes, uplift, and landscape. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kirby E, Whipple K (2001) Quantifying differential rock uplift rates via stream profile analysis. Geology 29(5):415–418. doi:10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2

    Article  Google Scholar 

  • Kirby E, Whipple KX, Burchfiel BC, Tang W, Berger G, Sun Z, Chen Z (2000) Neotectonics of the Min Shan, China: implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geol Soc Am Bull 112(3):375–393. doi:10.1130/0016-7606(2000)112<375:NOTMSC>2.0.CO;2

    Article  Google Scholar 

  • Kumar N, Singh AP, Rao MRKP, Chandrasekhar DV, Singh B (2009) Gravity signatures, derived crustal structure and tectonics of Achankovil Shear Zone, Southern India. Gondwana Res 16(1):45–55. doi:10.1016/j.gr.2008.11.003

    Article  Google Scholar 

  • Kumar BA, Gopinath G, Shylesh Chandran MS (2014) River sinuosity in a humid tropical river basin, south west coast of India. Arab J Geosci 7(5):1763–1772. doi:10.1007/s12517-013-0864-y

    Article  Google Scholar 

  • Leeder MR (1993) Tectonic controls upon drainage basin development, river channel migration and alluvial architecture: implications for hydrocarbon reservoir development and characterization. Geol Soc Lond Spec Publ 73:7–22. doi:10.1144/GSL.SP.1993.073.01.02

    Article  Google Scholar 

  • Luo W (2000) Quantifying groundwater-sapping landforms with a hypsometric technique. J Geophys Res Planets 105(E1):1685–1694. doi:10.1029/1999JE001096

    Article  Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis. Geosci Front 3(4):407–428. doi:10.1016/j.gsf.2011.12.002

    Article  Google Scholar 

  • McCleary RJ, Hassan MA, Miller D, Moore RD (2011) Spatial organization of process domains in headwater drainage basins of a glaciated foothills region with complex longitudinal profiles. Water Resour Res 47(5):W05505. doi:10.1029/2010WR009800

    Article  Google Scholar 

  • Meißner B, Deters P, Srikantappa C, Kohler H (2002) Geochronological evolution of the Moyar, Bhavani and Palghat shear zones of southern India: implications for east Gondwana correlations. Precambr Res 114(1–2):149–175. doi:10.1016/S0301-9268(01)00222-4

    Article  Google Scholar 

  • Merritts DJ (1996) The Mendocino triple junction: active faults, episodic coastal emergence, and rapid uplift. J Geophys Res Solid Earth 101(B3):6051–6070. doi:10.1029/95JB01816

    Article  Google Scholar 

  • Mueller JE (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann Assoc Am Geogr 58(2):371–385. doi:10.1111/j.1467-8306.1968.tb00650.x

    Article  Google Scholar 

  • Mulder T, Syvitski JPM (1996) Climatic and morphologic relationships of rivers: implications of sea-level fluctuations on river loads. J Geol 104(5):509–523. doi:10.1086/629849

    Article  Google Scholar 

  • Nair KK (2007) Quaternary geology and geomorphology of the coastal plains of Kerala. Geol Surv India Spec Publ 88:73

    Google Scholar 

  • Nair KM, Rao RV, Srinivas B, Bhavana PR, Vijay Kumar A (1988) Review of exploration in Cochin Offshore Area (unpublished report). ONGC, Bombay

    Google Scholar 

  • Nair KM, Padmalal D, Kumaran KPN, Sreeja R, Limaye RB, Srinivas R (2010) Late Quaternary evolution of Ashtamudi–Sasthamkotta lake systems of Kerala, south west India. J Asian Earth Sci 37(4):361–372. doi:10.1016/j.jseaes.2009.09.004

    Article  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis 27(4):286–306. doi:10.1111/j.1538-4632.1995.tb00912.x

    Article  Google Scholar 

  • Patro PK, Sarma SVS, Naganjaneyulu K (2014) Three-dimensional lithospheric electrical structure of Southern Granulite Terrain, India and its tectonic implications. Journal of Geophysical Research Solid Earth 119(1):71–82. doi:10.1002/2013JB010430

    Article  Google Scholar 

  • Perez-Pena JV, Azanon JM, Azor A (2009a) CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput Geosci 35(6):1214–1223. doi:10.1016/j.cageo.2008.06.006

    Article  Google Scholar 

  • Perez-Pena JV, Azanon JM, Booth-Rea G, Azor A, Delgado J (2009b) Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. J Geophys Res Earth Surf 114(F2):F02018. doi:10.1029/2008JF001092

    Article  Google Scholar 

  • Perez-Pena JV, Azanon JM, Azor A, Delgado J, Gonzalez-Lodeiro F (2009c) Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surf Proc Land 34(1):16–25. doi:10.1002/esp.1684

    Article  Google Scholar 

  • Prasannakumar V (1998) Kinematics of Achankovil Shear Zone. South India. Gondwana Res 1(3–4):407. doi:10.1016/S1342-937X(05)70856-X

    Google Scholar 

  • Prentice CS, Merritts DJ, Beutner EC, Bodin P, Schill A, Muller JR (1999) Northern San Andreas fault near Shelter Cove, California. Geol Soc Am Bull 111(4):512–523. doi:10.1130/0016-7606(1999)111<0512:NSAFNS>2.3.CO;2

    Article  Google Scholar 

  • Radhakrishna T, Mathai J, Yoshida M (1990) Geology and structure of the High-grade rocks from Punalur–Achankovil Sector, South India. J Geol Soc India 35(3):263–272

    Google Scholar 

  • Rajaram M, Anand SP (2014) Aeromagnetic signatures of Precambrian shield and suture zones of Peninsular India. Geosci Front 5(1):3–15. doi:10.1016/j.gsf.2013.06.005

    Article  Google Scholar 

  • Rajendran CP, Rajendran K (1996) Low-moderate seismicity in the vicinity of Palghat Gap, south India and its implications. Curr Sci 70(4):304–308

    Google Scholar 

  • Rajendran CP, John B, Sreekumari K, Rajendran K (2009) Reassessing the earthquake hazard in Kerala based on the historical and current seismicity. J Geol Soc India 73(6):785–802. doi:10.1007/s12594-009-0063-3

    Article  Google Scholar 

  • Rajesh KG, Prasad GSV, Chetty TRK (2007) Structurally controlled drainage pattern in Precambrian mountainous terrain: a study from the southern Sahyadri, India. J Geol Soc India 70(3):499–519

    Google Scholar 

  • Sacks PE, Nambiar CG, Walters LJ (1997) Dextral Pan-African shear along the southwestern edge of the Achankovil Shear Belt, South India: constraints on Gondwana reconstructions. J Geol 105(2):275–284. doi:10.1086/515920

    Article  Google Scholar 

  • Salvany JM (2004) Tilting neotectonics of the Guadiamar drainage basin, SW Spain. Earth Surf Proc Land 29(2):145–160. doi:10.1002/esp.1005

    Article  Google Scholar 

  • Santosh M (1987) Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history. Contrib Miner Petrol 96(3):343–356. doi:10.1007/BF00371253

    Article  Google Scholar 

  • Santosh M, Yokoyama K, Biju-Sekhar S, Rogers JJW (2003) Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents. Gondwana Res 6(1):29–63. doi:10.1016/S1342-937X(05)70643-2

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res 16(2):321–341. doi:10.1016/j.gr.2008.12.012

    Article  Google Scholar 

  • Scheidegger AE (2004) Morphotectonics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67(5):597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

    Article  Google Scholar 

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics 92(4):335–337–341–367. doi:10.1016/0040-1951(83)90201-9

    Article  Google Scholar 

  • Shahzad F, Gloaguen R (2011) TecDEM: a MATLAB based toolbox for tectonic geomorphology, part 2: surface dynamics and basin analysis. Comput Geosci 37(2):261–271. doi:10.1016/j.cageo.2010.06.009

    Article  Google Scholar 

  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol Soc Am Bull 112(8):1250–1263. doi:10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2

    Article  Google Scholar 

  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2003) Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology 53(1–2):97–127. doi:10.1016/S0169-555X(02)00349-5

    Article  Google Scholar 

  • Soman K, Chattopadhyay M, Chattopadhyay S, Potti GK (2002) Occurrence and water resource potential of fresh water lakes in southern Kerala and their relation to the Quaternary geologic evolution of the Kerala coast. In: Narayana AC (ed) Late Quaternary geology of India and sea level changes. Geological Society of India Memoir 49, pp 17–29

  • Sougnez N, Vanacker V (2011) The topographic signature of Quaternary tectonic uplift in the Ardennes massif (Western Europe). Hydrol Earth Syst Sci 15(4):1095–1107. doi:10.5194/hess-15-1095-2011

    Article  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63(11):1117–1142. doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    Article  Google Scholar 

  • Valdiya KS, Narayana AC (2007) River response to neotectonic activity: example from Kerala, India. J Geol Soc India 70(3):427–443

    Google Scholar 

  • VanLaningham S, Meigs A, Goldfinger C (2006) The effects of rock uplift and rock resistance on river morphology in a subduction zone forearc, Oregon, USA. Earth Surf Process Landf 31(10):1257–1279. doi:10.1002/esp.1326

    Article  Google Scholar 

  • Vijith H, Prasannakumar V, Ninu Krishnan MV, Pratheesh P (2015) Morphotectonics of a small river basin in the South Indian granulite terrain: an assessment through spatially derived geomorphic indices. Georisk Assess Manag Risk Eng Syst Geohazards 9(3):187–199. doi:10.1080/17499518.2015.1074251

    Article  Google Scholar 

  • Vikas C (2009) Tectonic evolution of Achankovil Shear Zone. Ph.D. thesis, University of Kerala, Kerala, India

  • Vikas C, Prasannakumar V, Pratheesh P (2016) Role of microfabrics and magnetic fabrics in the tectonic evolution of the Achankovil shear-zone, South India. J Asian Earth Sci 131:95–108. doi:10.1016/j.jseaes.2016.09.011

    Article  Google Scholar 

  • Whipple KX (2004) Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32:151–185. doi:10.1146/annurev.earth.32.101802.120356

    Article  Google Scholar 

  • Whipple K, Wobus C, Crosby B, Kirby E, Sheehan D (2007) New tools for quantitative geomorphology: extraction and interpretation of stream profiles from digital topographic data. In: GSA short course, 506. GSA annual meeting, October 28, 2007, Boulder, CO

Download references

Acknowledgements

Technical support and helps during data analysis from Faisal Shahzad (Remote Sensing Group, Institute of Geology, Freiberg University of Mining and Technology, Germany), Aneesh S. (Former JRF, IUCGIST), Chinu Jose and Dr. Rajesh Reghunath (IIUCNRM) are greatly acknowledged. The authors are also thankful to the anonymous reviewers and the editor for their critical comments during revision to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobin Thomas.

Appendices

Appendix 1

See Table 1.

Table 1 Morphometric indices of basin geometry, shape and relief of ARB

Appendix 2

See Table 2.

Table 2 Morphometric indices of basin geometry, shape and relief of KRB

Appendix 3

See Table 3.

Table 3 Morpho-tectonic indicators estimated for ARB

Appendix 4

See Table 4.

Table 4 Morpho-tectonic indicators estimated for KRB

Appendix 5

See Table 5.

Table 5 Results of the global autocorrelation tests using the Moran’s I statistic

Appendix 6

See Table 6.

Table 6 Profile characteristics of Achankovil and Kallada river basins and selected sub-basins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J., Prasannakumar, V. Implications of shearing on drainage network development in Achankovil Shear Zone, South India: insights from DEM-based geomorphic indices and longitudinal profile analysis. Environ Earth Sci 76, 716 (2017). https://doi.org/10.1007/s12665-017-7016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7016-8

Keywords

Navigation