Skip to main content

Advertisement

Log in

Main drivers of drainage pattern development in onshore Makran Accretionary Wedge, SE Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Over time, river networks achieve a specific pattern as determined by the function of several factors such as climate, tectonic, geological structures, topography, lithology, and base-level fluctuations. The relative importance of mentioned factors on drainage systems was studied to determine the controlling factors of their heterogeneity across the tectono-stratigraphic zones of onshore Iranian Makran. We applied structural, geomorphological, and climate analysis. Results indicate that the dendritic patterns of N-S flowing rivers in the western part of Iranian Makran are mostly controlled by the Minab-Zendan Fault activity and distribution of olistostrome cover, whereas the dominant trellis patterns in the eastern part are controlled by the well-developed thrust fault-related fold systems. The channel steepness pattern demonstrates that the high values are mostly localized in the hanging wall of thrust and normal faults. Accordingly, the topographic profiles of the steep rivers show the old stages of incision in the Inner and Outer Makran. However, some rivers of the Coastal Makran are in the young stage of incision, where the normal faults are located and active. The sediment connectivity index shows that the Inner Makran has a high potential of sediment supplies, while the Outer Makran intra-mountain basins and the Coastal-plain are more prone to sediments accumulation. Our findings reveal that the river patterns and landscape evolution in the Inner and Outer Makran are controlled by thrust faults, olistostrome and related mini-basins, while rivers in the Coastal Makran are governed by activity of Pliocene–Pleistocene normal faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The TanDEM-X 12.5 m images used in this study are available through the German Aerospace Center (https://tandemx-science.dlr.de/). All modern climate data appears in the main body of the text, and supplementary material comes from the Meteorological stations, Water Resources Management Company of Iran (TAMAB).

References

  • Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307:1064–1095

    Article  Google Scholar 

  • Ambraseys N, Melville C (1982) A history of persian earthquakes cambridge univ. Press, New York

    Google Scholar 

  • Aravinda P, Balakrishna H (2013) Morphometric analysis of Vrishabhavathi watershed using remote sensing and GIS. Int J Res Eng Technol 2:514–522

    Article  Google Scholar 

  • Back S, Morley CK (2016) Growth faults above shale–Seismic-scale outcrop analogues from the Makran foreland, SW Pakistan. Mar Pet Geol 70:144–162

    Article  Google Scholar 

  • Beechie TJ, Pollock MM, Baker S (2008) Channel incision, evolution and potential recovery in the Walla Walla and Tucannon River basins, northwestern USA. Earth Surf Proc Land 33(5):784–800

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford university press. p. 477

  • Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. CATENA 75:268–277

    Article  Google Scholar 

  • Bouma N, Imeson A (2000) Investigation of relationships between measured field indicators and erosion processes on badland surfaces at Petrer, Spain. CATENA 40:147–171

    Article  Google Scholar 

  • Bourget J, Zaragosi S, Ellouz-Zimmermann S, Ducassou E, Prins M, Garlan T, Lanfumey V, Schneider J-L, Rouillard P, Giraudeau J (2010) Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Mar Geol 274:187–208

    Article  Google Scholar 

  • Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Proc Land 24:1039–1054

    Article  Google Scholar 

  • Bracken LJ, Turnbull L, Wainwright J, Bogaart P (2015) Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surf Proc Land 40:177–188

    Article  Google Scholar 

  • Bull WB (2011) Tectonically active landscapes. John Wiley & Sons, p. 320

  • Burbank DW, Anderson RS (2011) Tectonic geomorphology. John Wiley & Sons, p. 460

  • Burg J-P (2018) Geology of the onshore Makran accretionary wedge: synthesis and tectonic interpretation. Earth Sci Rev 185:1210–1231

    Article  Google Scholar 

  • Burg J-P, Mohammadi A (2015) ETH reconnaissance excursion in Western Makran, November 2015. Internal report of ETH Zurich. p. 47

  • Burg JP, Bernoulli D, Smit J, Dolati A, Bahroudi A (2008) A giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 20:188–193

    Article  Google Scholar 

  • Burg J-P, Dolati A, Bernoulli D, Smit J (2013) Structural style of the Makran Tertiary accretionary complex in SE-Iran, Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues. Springer, pp. 239–259

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res Solid Earth 97:449–478

    Article  Google Scholar 

  • Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188:31–41

    Article  Google Scholar 

  • Crema S, Cavalli M (2018) SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity. Comput Geosci 111:39–45

    Article  Google Scholar 

  • Cullen HM, Demenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28(4):379–382

    Article  Google Scholar 

  • Cyr AJ, Granger DE, Olivetti V, Molin P (2010) Quantifying rock uplift rates using channel steepness and cosmogenic nuclide–determined erosion rates: examples from northern and southern Italy. Lithosphere 2(3):188–198

    Article  Google Scholar 

  • Dales M, Reed D (1989) Regional flood and storm hazard assessment. Wallingford, Institute of Hydrology, (IH Report No.102), p. 159

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res Solid Earth 88(B2):1153–1172

    Article  Google Scholar 

  • De Jong KA (1974) Melange (Olistostrome) near Lago Titicaca. Peru AAPG Bulletin 58(4):729–741

    Google Scholar 

  • DiBiase RA, Whipple KX, Heimsath AM, Ouimet WB (2010) Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planet Sci Lett 289:134–144

    Article  Google Scholar 

  • Dolati A (2010) Stratigraphy, structural geology and low-temperature thermochronology across the Makran accretionary wedge in Iran. Dissertation, Zürich, Switzerland, Eidgenössische Technische Hochschule (ETH) Zürich, no. 19151, p. 306

  • Dolati A, Burg J-P (2013) Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran, Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues. Springer, pp. 261–277

  • Dragičević N, Karleuša B, Ožanić N (2018) Improvement of drainage density parameter estimation within erosion potential method. Multidisciplin Digital Publish Institute Proc 2(11):620

    Google Scholar 

  • Ellouz-Zimmermann N, Lallemant S, Castilla R, Mouchot N, Leturmy P, Battani A, Buret C, Cherel L, Desaubliaux G, Deville E (2007) Offshore frontal part of the Makran Accretionary prism: The Chamak survey (Pakistan), Thrust belts and foreland basins. Springer, pp. 351–366

  • Farhoudi G, Karig DE (1977) Makran of Iran and Pakistan as an active arc system. Geology 5(11):664–668

    Article  Google Scholar 

  • Feldman S, Harris SA, Fairbridge RW (1997) Drainage patterns, Geomorphology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 284–291

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quatern Sci Rev 26:170–188

    Article  Google Scholar 

  • Flint JJ (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10(5):969–973

    Article  Google Scholar 

  • Fritz HM, Blount CD, Albusaidi FB, Al-Harthy AHM (2010) Cyclone Gonu storm surge in Oman. Estuar Coast Shelf Sci 86(1):102–106

    Article  Google Scholar 

  • Gailleton B, Mudd SM, Clubb FJ, Grieve SW, Hurst MD (2021) Impact of changing concavity indices on channel steepness and divide migration metrics. J Geophys Res Earth Surface 126(10):2020JF006060

  • Gallen SF, Wegmann KW (2017) River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf Dyn 5:161–186

    Article  Google Scholar 

  • Goldsworthy M, Jackson J (2000) Active normal fault evolution in Greece revealed by geomorphology and drainage patterns. J Geol Soc 157(5):967–981

    Article  Google Scholar 

  • Grando G, McClay K (2007) Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sed Geol 196:157–179

    Article  Google Scholar 

  • Haghipour N, Burg J-P (2014) Geomorphological analysis of the drainage system on the growing Makran accretionary wedge. Geomorphology 209:111–132

    Article  Google Scholar 

  • Haghipour N, Burg J-P, Kober F, Zeilinger G, Ivy-Ochs S, Kubik PW, Faridi M (2012) Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge: the folded fluvial terraces in Makran (SE, Iran). Earth Planet Sci Lett 355:187–198

    Article  Google Scholar 

  • Haghipour N, Burg J-P, Ivy-Ochs S, Hajdas I, Kubik P, Christl M (2015) Correlation of fluvial terraces and temporal steady-state incision on the onshore Makran accretionary wedge in southeastern Iran: Insight from channel profiles and 10Be exposure dating of strath terraces. Bulletin 127:560–583

  • Harel MA, Mudd SM, Attal M (2016) Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 268:184–196

    Article  Google Scholar 

  • He W, Liu J, Huang Y, Cao L (2020) Sea level change controlled the sedimentary processes at the Makran continental margin over the past 13,000 yr. J Geophys Re Oceans 125:e2019JC015703

  • Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC, Mokhtari M, Esmaeily A (2008) Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35:774–786

    Article  Google Scholar 

  • Hoffmann G, Rupprechter M, Al Balushi N, Grützner C, Reicherter K (2013) The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean)–a review. Z Geomorphol 57:257–277

    Article  Google Scholar 

  • Horton RE (1932) Drainage-basin characteristics. EOS Trans Am Geophys Union 13:350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Howard AD (1967) Drainage analysis in geologic interpretation: a summation. AAPG Bull 51:2246–2259

    Google Scholar 

  • Howard AD (1997) Badland morphology and evolution: Interpretation using a simulation model. Earth Surface Proc Landforms 22:211–227

    Article  Google Scholar 

  • Hunziker D, Burg JP, Bouilhol P, von Quadt A (2015) Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34:571–593

    Article  Google Scholar 

  • Jackson J, Leeder M (1994) Drainage systems and the development of normal faults: an example from Pleasant Valley. Nevada J Struct Geol 16(8):1041–1059

    Article  Google Scholar 

  • Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139:122–135

    Article  Google Scholar 

  • Kaveh Firouz A (2018) Active Collision Zones: Morphotectonic Analysis, Cosmogenic Nuclide Evidence and Kinematic Modelling of the Turkish-Iranian Plateau and Caucasus Regions, Doctoral dissertation, ETH Zürich

  • Kaveh FA, Mohammadi A, Lak R (2020) Makran coastal plain deposits (SE Iran), a potential source of aeolian sediments; insights from sedimentology and geochemistry. 2nd International Conference on Oceanography for West Asia, (16, 17 September 2020 Tehran, Iran), pp. 98–101

  • Kehl M (2009) Quaternary climate change in Iran—the state of knowledge. Erdkunde 63:1–17

    Article  Google Scholar 

  • Keller EA (1986) Investigation of active tectonics: use of surficial earth processes. Active Tectonics 1:136–147

    Google Scholar 

  • Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. J Struct Geol 44:54–75

    Article  Google Scholar 

  • Kober F, Zeilinger G, Ivy-Ochs S, Dolati A, Smit J, Kubik P (2013) Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran. Global Planet Change 111:133–149

    Article  Google Scholar 

  • Kochel RC (1990) Humid fans of the Appalachian Mountains. Alluvial Fans: A Field Approach. Wiley, New York, 109–129

  • Kopp C, Fruehn J, Flueh ER, Reichert C, Kukowski N, Bialas J, Klaeschen D (2000) Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics 329(1–4):171–191

    Article  Google Scholar 

  • Kukowski N, Schillhorn T, Huhn K, von Rad U, Husen S, Flueh ER (2001) Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Mar Geol 173(1–4):1–19

    Article  Google Scholar 

  • Leeder MR, Jackson JA (1993) The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Res 5(2):79–102

    Article  Google Scholar 

  • Leggett JK, Platt J (1984) Structural features of the Makran fore-arc on Landsat imagery. Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold, New York 33:44

  • Lin Z, Oguchi T (2004) Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs. Geomorphology 63:159–173

    Article  Google Scholar 

  • Mandal SK, Lupker M, Burg JP, Valla PG, Haghipour N, Christl M (2015) Spatial variability of 10Be-derived erosion rates across the southern Peninsular Indian escarpment: A key to landscape evolution across passive margins. Earth Planet Sci Lett 425:154–167

    Article  Google Scholar 

  • Marquardt C, Lavenu A, Ortlieb L, Godoy E, Comte D (2004) Coastal neotectonics in Southern Central Andes: uplift and deformation of marine terraces in Northern Chile (27 S). Tectonophysics 394(3–4):193–219

    Article  Google Scholar 

  • Masson F, Anvari M, Djamour Y, Walpersdorf A, Tavakoli F, Daignieres M, Nankali H, Van Gorp S (2007) Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran. Geophys J Int 170:436–440

    Article  Google Scholar 

  • McCall G (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15:517–531

    Article  Google Scholar 

  • McCall GJ (2002) A summary of the geology of the Iranian Makran. Geol Soc London, Spec Public 195:147–204

    Article  Google Scholar 

  • McCall GJH, Kidd RGW (1982) The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. Geol Soc London Spec Public 10(1):387–397

    Article  Google Scholar 

  • Melton MA (1958) Correlation structure of morphometric properties of drainage systems and their controlling agents. J Geol 66:442–460

    Article  Google Scholar 

  • Melton MA (1965) The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J Geol 73:1–38

    Article  Google Scholar 

  • Miller CS, Leroy SA, Collins PE, Lahijani HA (2016) Late Holocene vegetation and ocean variability in the Gulf of Oman. Quatern Sci Rev 143:120–132

    Article  Google Scholar 

  • Minshull T, White R (1989) Sediment compaction and fluid migration in the Makran accretionary prism. J Geophys Res Solid Earth 94(B6):7387–7402

    Article  Google Scholar 

  • Mohammadi A (2010) Sedimentology and sedimentary geochemistry of Jazmurian playa. J Arid Biome 1(1):68–79

    Google Scholar 

  • Mohammadi A, Burg J-P, Guillong M, von Quadt A (2017) Arc magmatism witnessed by detrital zircon U-Pb geochronology, Hf isotopes and provenance analysis of Late Cretaceous-Miocene sandstones of onshore western Makran (SE Iran). Am J Sci 317:941–964

    Article  Google Scholar 

  • Mohammadi A, Burg J-P, Winkler W, Ruh J, von Quadt A (2016a) Detrital zircon and provenance analysis of Late Cretaceous–Miocene onshore Iranian Makran strata: Implications for the tectonic setting. Bulletin 128:1481–1499

  • Mohammadi A, Burg J-P, Winkler W (2016b) Detrital zircon and provenance analysis of Eocene–Oligocene strata in the South Sistan suture zone, southeast Iran: Implications for the tectonic setting: Lithosphere 8(6):615–632

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201:481–489

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1989) Source areas, drainage density, and channel initiation. Water Resour Res 25:1907–1918

    Article  Google Scholar 

  • Moore ID, Grayson R, Ladson A (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Morisawa ME (1962) Quantitative geomorphology of some watersheds in the Appalachian Plateau. Geol Soc Am Bull 73(9):1025–1046

    Article  Google Scholar 

  • Musson R (2009) Subduction in the Western Makran: the historian’s contribution. J Geol Soc 166:387–391

    Article  Google Scholar 

  • Normand R, Simpson G, Herman F, Biswas RH, Bahroudi A, Schneider B (2019a) Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran). Earth Surf Dyn 7:321–344

    Article  Google Scholar 

  • Normand R, Simpson G, Bahroudi A (2019b) Extension at the coast of the Makran subduction zone (Iran). Terra Nova 31(6):503–510

    Article  Google Scholar 

  • Peakall J (1998) Axial river evolution in response to half-graben faulting; Carson River, Nevada, USA. J Sediment Res 68(5):788–799

    Article  Google Scholar 

  • Penney C, Copley A, Oveisi B (2015) Subduction tractions and vertical axis rotations in the Zagros-Makran transition zone, SE Iran: the 2013 May 11 M w 6.1 Minab earthquake. Geophys J Int 202:1122–1136

    Article  Google Scholar 

  • Penney C, Tavakoli F, Saadat A, Nankali HR, Sedighi M, Khorrami F, Sobouti F, Rafi Z, Copley A, Jackson J (2017) Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophys J Int 209:1800–1830

    Article  Google Scholar 

  • Peri VG, Haghipour N, Christl M, Terrizzano C, Kaveh-Firouz A, Leiva MF, Pérez P, Yamin M, Barcelona H, Burg JP (2022) Quaternary landscape evolution in the Western Argentine Precordillera constrained by 10Be cosmogenic dating. Geomorphology 396:107984

    Article  Google Scholar 

  • Rajendran C, Rajendran K, Shah-Hosseini M, Beni AN, Nautiyal CM, Andrews R (2013) The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Nat Hazards 65:219–239

    Article  Google Scholar 

  • Rangzan KI (1995) Morpho-tectonic study of Zagros structural belt of SW Iran using remote sensing techniques. J Indian Soc Remote Sensing 23:211–224

    Article  Google Scholar 

  • Regard V, Bellier O, Thomas JC, Abbassi M, Mercier J, Shabanian E, Feghhi K, Soleymani S (2004) Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and subduction through a young deforming system. Tectonics 23:1–24

    Article  Google Scholar 

  • Regard V, Bellier O, Thomas J-C, Bourles D, Bonnet S, Abbassi M, Braucher R, Mercier J, Shabanian E, Soleymani S (2005) Cumulative right-lateral fault slip rate across the Zagros—Makran transfer zone: role of the Minab—Zendan fault system in accommodating Arabia—Eurasia convergence in southeast Iran. Geophys J Int 162:177–203

    Article  Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their Boundaries since 260 Ma from Central America to South-eastern Asia. Geodin Acta 7(4):169–218

    Article  Google Scholar 

  • Ring U, Glodny J, Thomson WT, S, (2010) The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annu Rev Earth Planet Sci 38:45–76

    Article  Google Scholar 

  • Ruh JB, Vergés J, Burg JP (2018) Shale-related minibasins atop a massive olistostrome in an active accretionary wedge setting: Two-dimensional numerical modeling applied to the Iranian Makran. Geology 46(9):791–794

    Article  Google Scholar 

  • Saillard M, Hall SR, Audin L, Farber DL, Regard V, Hérail G (2011) Andean coastal uplift and active tectonics in southern Peru: 10Be surface exposure dating of differentially uplifted marine terrace sequences (San Juan de Marcona,~ 15.4 S). Geomorphology, 128(3–4):178–190

  • Scherler D, Bookhagen B, Strecker MR (2014) Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India. J Geophys Res Earth Surf 119(2):83–105

    Article  Google Scholar 

  • Schlüter HU, Prexl A, Gaedicke C, Roeser H, Reichert C, Meyer H, Von Daniels C (2002) The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Mar Geol 185(3–4):219–232

    Article  Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Schwanghart W, Scherler D (2014) TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf Dyn 2:1–7

    Article  Google Scholar 

  • Schwanghart W, Scherler D (2017) Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques. Earth Surf Dyn 5:821–839

    Article  Google Scholar 

  • Seybold H, Berghuijs WR, Prancevic JP, Kirchner JW (2021) Global dominance of tectonics over climate in shaping river longitudinal profiles. Nat Geosci 14:503–507

    Article  Google Scholar 

  • Shah-Hosseini M, Ghanavati E, Morhange C, Beni AN, Lahijani HA, Hamzeh MA (2018) The evolution of Chabahar beach ridge system in SE Iran in response to Holocene relative sea level changes. Geomorphology 318:139–147

    Article  Google Scholar 

  • Smith AG, Fox M, Schwanghart W, Carter A (2022) Comparing methods for calculating channel steepness index. Earth Sci Rev 227:103970

    Article  Google Scholar 

  • Snead RJ (2002) Uplifted marine terraces along the Makran coast of Pakistan and Iran, Himalaya to the Sea. Routledge, pp. 225–246

  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol Soc Am Bull 112:1250–1263

    Article  Google Scholar 

  • St-Onge D (2012) Late Wisconsinan morphosedimentary sequences of the lower Coppermine River valley. Nunavut and Northwest Territories Geosci Canada 39(3):132–147

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. EOS Trans Am Geophys Union 38:913–920

    Article  Google Scholar 

  • Tucker GE, Slingerland R (1997) Drainage basin responses to climate change. Water Resour Res 33:2031–2047

    Article  Google Scholar 

  • Tucker GE, Whipple KX (2002) Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. J Geophys Res Solid Earth 107(B9):ETG-1

  • Twidale C (2004) River patterns and their meaning. Earth Sci Rev 67:159–218

    Article  Google Scholar 

  • Valkanou K, Karymbalis E, Papanastassiou D, Soldati M, Chalkias C, Gaki-Papanastassiou K (2020) Μorphometric analysis for the assessment of relative tectonic activity in Evia Island. Greece Geosci 10:264

    Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi M, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157:381–398

    Article  Google Scholar 

  • Viaplana-Muzas M, Babault J, Dominguez S, Van Den Driessche J, Legrand X (2015) Drainage network evolution and patterns of sedimentation in an experimental wedge. Tectonophysics 664:109–124

    Article  Google Scholar 

  • Vijith H, Prasannakumar V, Sharath Mohan M, Ninu Krishnan M, Pratheesh P (2017) River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain (SIGT). Phys Geogr 38:360–378

    Article  Google Scholar 

  • Vita-Finzi C (2002) Neotectonics on the Arabian Sea coasts. Geol Soc London Spec Public 195:87–96

    Article  Google Scholar 

  • Von Rad U, Berner U, Delisle G, Doose-Rolinski H, Fechner N, Linke P, Lückge A, Roeser HA, Schmaljohann R, Wiedicke M, Block M (2000) Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Mar Lett 20(1):10–19

    Article  Google Scholar 

  • Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J Photogramm Remote Sens 139:171–182

    Article  Google Scholar 

  • Weyhenmeyer CE, Burns SJ, Waber HN, Macumber PG, Matter A (2002) Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman. Water Res Res 38:21–22

    Article  Google Scholar 

  • Whipple KX (2004) Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet 32:151–185

    Article  Google Scholar 

  • Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res Solid Earth 104(B8):17661–17674

    Article  Google Scholar 

  • White RS (1982) Deformation of the Makran accretionary sediment prism in the Gulf of Oman (north-west Indian Ocean). Geol Soc London Spec Public 10:357–372

    Article  Google Scholar 

  • White RS (1983) The Makran accretionary prism. Book chapter

  • White RS, Louden KE (1982) The Makran continental margin: structure of a thickly sedimented convergent plate boundary: convergent margins: field investigations of margin structure and stratigraphy. AAPG 499–518

  • Wilford D, Sakals M, Innes J, Sidle R, Bergerud W (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1:61–66

    Article  Google Scholar 

  • Willett SD, McCoy SW, Perron JT, Goren L, Chen C-Y (2014) Dynamic reorganization of river basins. Science 343:61–75

    Article  Google Scholar 

  • Wilson JP (2018) Environmental applications of digital terrain modeling. John Wiley & Sons, p. 360

  • Wobus C, Whipple KX, Kirby E, Snyder N, Johnson J, Spyropolou K, Crosby B, Sheehan D, Willett S (2006) Tectonics from topography: procedures, promise, and pitfalls. Spec Papers Geol Soc Am 398:55

    Google Scholar 

  • Zernitz ER (1932) Drainage patterns and their significance. J Geol 40:498–521

    Article  Google Scholar 

  • Zingaro M, Refice A, Giachetta E, D’Addabbo A, Lovergine F, De Pasquale V, Pepe G, Brandolini P, Cevasco A, Capolongo D (2019) Sediment mobility and connectivity in a catchment: a new mapping approach. Sci Total Environ 672:763–775

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Istanbul Technical University (İTÜ)/BAP project MAB-2020-42407, and Iran’s National Elites Foundation (no. 101/71460, no. 101/71624). Thanks to German Aerospace Centre (DLR, Germany) for providing TanDEM-X datasets under proposal DEM_GEOL3191. The authors thank Lucía Sagripanti and an anonymous referee, as well as Topic Editor Laura Giambiagi for their insightful and constructive comments, which improved the initial manuscript. Thanks also go to Prof. Ulrich Riller for his efficient and thoughtful work as Editor-in-Chief.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaneh Kaveh-Firouz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 37 KB)

Supplementary file2 (DOCX 3286 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh-Firouz, A., Mohammadi, A., Görüm, T. et al. Main drivers of drainage pattern development in onshore Makran Accretionary Wedge, SE Iran. Int J Earth Sci (Geol Rundsch) 112, 539–559 (2023). https://doi.org/10.1007/s00531-022-02270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02270-6

Keywords

Navigation