Skip to main content

Advertisement

Log in

Two decades of system-based hygienic–microbiological research in Swist river catchment (Germany)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A multidisciplinary research project series has sought to identify and better understand multiple hygienic–microbiological and chemical contaminations from both point sources and diffuse pollution to contribute to the improvement in surface water quality. In the catchment area of the river Swist (Germany), municipal sewage treatment plants were investigated, followed by event-based investigation of combined sewer overflows, rainwater retention basins and diffuse pollution by surface and subsurface run-off as well as drain pipes. Recently, retention soil filters installed between stormwater storage basins and receiving surface waters in order to provide further treatment of combined sewer overflows were investigated. Geographical information system analysis helped to examine the data in their temporal and spatial dimensions. A model for calculating microbial and chemical loads within a catchment area was developed (“Swistbox”) which provides an efficient tool for risk assessment. Nearly two decades of investigation has demonstrated that several elements of the landscape’s water balance account for surface water pollution from both diffuse and point sources. Depending on land cover characteristics, wastewater technology and the proportion of wastewater as compared to total river water flow, a source can vary in its importance for the catchment area. The findings can be applied for sustainable and health-sensitive catchment management in relation to recreational or agricultural water use as well as ecological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Investigation of the impact of sewage treatment plants on microbiological surface water quality ("Swist I"), 1999–2001; Kistemann et al. 2008, Kistemann et al. (2012), Rechenburg et al. (2006), Rechenburg and Kistemann (2009).

  2. Investigation of the impact of combined sewage overflows resulting from heavy rainfall on microbiological surface water quality, taking as an example the river Swistbach ("Swist II"), 2002–2004; Kistemann et al. (2012), Rechenburg et al. (2006).

  3. Microbiological contamination of surface waters resulting from diffuse pollution, taking as an example the river Swist ("Swist III"), 2005–2007; Christoffels 2010, Franke et al. (2009), Kistemann et al. (2012), Schreiber et al. (2015).

  4. Examination and evaluation of measures to reduce physico-chemical and hygienic-microbiological contamination of surface watercourses on the example of Swist ("Swist IV"), 2009–2012; Christoffels (2008), Christoffels et al. (2014).

  5. Evaluation of innovative measures to reduce chemical micropollutants and micro-organisms in surface watercourses (ReSMo), 2013-2016.

  6. This German index represents a five-stage ecological classification (I–V) based on the saproby system with special respect to organic substances and oxygen depletion. Core variables are species diversity, species abundance and age structure of fishes. Class II represents a moderate pollution and good oxygen supply. Characteristics are a very high species diversity and abundance of especially algae and benthic invertebrates, larger areas covered by hydrophytes and being a fertile fish water. The biological surface water quality class II corresponds to the quality target “good water quality” defined by the European Water Framework Directive.

  7. The remaining inhabitants, especially of the village Weilerswist, were connected to STPs discharging into other river catchment areas. The burden caused by direct discharge or those from small-scale sewage treatment plants is estimated to be minor due to the overall connection rates to STPs of >98% within the catchment area of the receiving river Erft (MUNLV 2005).

  8. Of course all methods are extensively described in the final project reports (download at http://www.lanuv.nrw.de/landesamt/forschungsvorhaben/; in German language only).

References

  • Aitken MN (2003) Impact of agricultural practices and river catchment characteristics on river and bathing water quality. Water Sci Technol 48:217–224

    Google Scholar 

  • Chandrasena GI, Deletic A, Ellerton J, McCarthy DT (2012) Evaluation Escherichia coli removal performance in stormwater biofilters: a laboratory-scale study. Water Sci Technol 66:1132–1138

    Article  Google Scholar 

  • Christoffels E (2008) Monitoring und Modellanwendung–Entwicklung eines Immisionsinventars am Beispiel der Erft (Monitoring and modeliiling– developement of an immission inventory at the example of Erft River). Dissertation, University of Trier, Bergheim

  • Christoffels E (2010) Chemisch-physikalische Stoffeinträge in die Fließgewässer aus den Abflusskomponenten des Landschaftswasserhaushalts [Chemico-physical element input into the surface waters out of run-off components of the landscapes hydrologic balance]. In: Pinnekamp J (ed) 43. Essener Tagung für Wasser und Abfallwirtschaft Gewässerschutz, Wasser, Abwasser 220. Gesellschaft zur Förderung der Siedlungswasserwirtschaft an der RWTH Aachen, Aachen, Germany, pp 9/1-9/13

  • Christoffels E, Mertens FM, Kistemann T, Schreiber C (2014) Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter. Water Sci Technol 70:1503–1509

    Article  Google Scholar 

  • Crowther J, Kay D, Wyer MD (2002) Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. Water Res 36:1725–1734

    Article  Google Scholar 

  • Davies J-M, Mazumder A (2003) Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources. J Environ Manage 68:273–286

    Article  Google Scholar 

  • Dillaha TA, Zolan WJ (1985) Rainwater catchment water quality in Micronesia. Water Res 19:741–746

    Article  Google Scholar 

  • DIN EN 26461-2 (1993) Water quality; detection and enumeration of the spores of sulfite-reducing anaerobes (clostridia); part 2: method by membrane filtration (ISO 6461-2:1986). German version. Deutsches Institut für Normung e.V, Berlin

    Google Scholar 

  • DIN EN ISO 10705-2 (2002) Water quality—detection and enumeration of bacteriophages—Part 2: enumeration of somatic coliphages (ISO 10705-2:2000). German version. Deutsches Institut für Normung e.V, Berlin

  • DIN EN ISO 7899-2 (2000) Water quality—detection and enumeration of intestinal enterococci—Part 2: Membrane filtration method (ISO 7899-2:2000). German version. Deutsches Institut für Normung e.V, Berlin

  • Directive 2000/60/EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy (Water Framework Directive) Official Journal L 327 (43):1–73

  • Directive 76/160/EEC (2003) Council Directive 76/160/EEC of 8 December 1975 concerning the quality of bathing water as amended by Council Directive 91/692/EEC (further amended by Council Regulation 1882/2003/EC), and Council Regulation 807/2003/EC (Bathing Water Directive) Official Journal L 31:1–9

  • DWA (ed) (2016) Merkblatt DWA-M 624 - Risiken an Badestellen und Freizeitgewässern aus gewässerhygienischer Sicht [Risks at surface water bathing sites and recreational waters from a water hygiene perspective]. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef, Germany

  • EPA (2005) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. Environmental Protection Agency, Washington

  • Ferguson CM, Davies CM, Kaucner C, Krogh M, Rodehutskors J, Deere DA, Ashbolt NJ (2007) Field scale quantification of microbial transport from bovine faeces under simulated rainfall. J Water Health 5:83–95

    Article  Google Scholar 

  • Figueras MJ, Borrego JJ (2010) New Perspectives in Monitoring Drinking Water Microbial Quality. Int J Environ Res Public Health 7:4179–4202

    Article  Google Scholar 

  • Franke C, Rechenburg A, Baumanns S, Willkomm M, Christoffels E, Exner M, Kistemann T (2009) The emission potential of different land use patterns for the occurrence of coliphages in surface water. Int J Hyg Envir Heal 212:338–345

    Article  Google Scholar 

  • Gornik V, Behringer K, Kölb B, Exner M (2000) Erster Giardiasisausbruch im Zusammenhang mit kontaminiertem Trinkwasser in Deutschland [First Giardiasis-outbreak associated with contaminated water supply in Germany]. Bundesgesundheitsblatt–Gesundheitsforschung-Gesundheitsschutz 44:351–357

  • Hansen JS, Ongerth JE (1991) Effects of time and watershed characteristics on the concentration of Cryptosporidium oocysts in river water. Appl Environ Microb 57:2790–2795

    Google Scholar 

  • Heyworth JS, Glonek G, Maynard EJ, Baghurst PA, Finlay-Jones J (2006) Consumption of untreated tank rainwater and gastroenteritis among young children in South Australia. Int J Epidemiol 35:1051–1058

    Article  Google Scholar 

  • HMSO (1989) Isolation and identification of Giardia cysts, Cryptosporidium oocysts and free living pathogenic Amoebae in water etc. Methods for the examination of waters and associated materials. Her Majesty’s Stationery Office, London

  • Holländer R, Bullermann M, Gross C, Hartung H, König K, Lücke F-K, Nolde E (1996) Mikrobiologisch-hygienische Aspekte bei der Nutzung von Regenwasser als Betriebswasser für Toilettenspülung, Gartenbewässerung und Wäschewaschen [Microbiological and hygienic aspects of the use of rainwater as process water for toilet flushing, garden irrigation and laundering]. Gesundheitswesen 58:288–293

    Google Scholar 

  • ISO 15553 (2006) Water quality - Isolation and identification of Cryptosporidium oocysts and Giardia cysts from water. International Organization for Standarization, Geneva

    Google Scholar 

  • ISO 6579 (1993) Microbiology of the food chain—horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: horizontal method for the detection of Salmonella spp. International Organization for Standarization, Geneva

    Google Scholar 

  • Kay D, Aitken M, Crowther J, Dickso I, Edwards AC, Francis C, Hopkins M, Jeffrey W, Kay C, McDonald AT, Stapleton CM, Watkins J, Wilkinson J, Wyer MD (2007) Reducing fluxes of fecal indicator compliance to bathingwater from agricultural diffuse sources: the Brighthouse Bay study, Scotland. Environ Pollut 147:138–149

    Article  Google Scholar 

  • Keusen HJ, Böer S, Fastner J, Güde H, Kulle E-P, Rechenburg A, Schreiber C, Schade M, Tuschewitzki GJ (2015) Gewässerhygienische Bewertung von Badestellen und Freizeitgewässern [Water hygienic evaluation of bathing sites and recreational waters]. KW Korrespondenz Wasserwirtschaft 8:613–621

    Google Scholar 

  • Kistemann, T, Dangendorf F, Koch C, Fischeder R, Exner M (1998) Mikrobielle Belastung von Trinkwassertalsperren-Zuläufen in Abhängigkeit vom Einzugsgebiet [Microbial contamination of drinking water reservoir tributaries dependent on the catchment area]. gwf-Wasser|Abwasser 139:17–22

  • Kistemann T, Dangendorf F, Exner M (2001) A Geographical Information System (GIS) as a tool for microbial risk assessment in catchment areas of drinking water reservoirs. Int J Hyg Envir Heal 203:225–233

    Article  Google Scholar 

  • Kistemann T, Claßen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M (2002) Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Appl Environ Microb 68:2188–2197

    Article  Google Scholar 

  • Kistemann T, Rind E, Rechenburg A, Koch C, Claßen T, Herbst S, Wienand I, Exner M (2008) A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems. Int J Hyg Envir Heal 211:534–545

    Article  Google Scholar 

  • Kistemann T, Rind E, Koch C, Claßen T, Lengen C, Exner M, Rechenburg A (2012) Effect of sewage treatment plants and diffuse pollution on the occurrence of protozoal parasites in the course of a small river. Int J Hyg Envir Heal 215:577–583

    Article  Google Scholar 

  • Miller WA, Lewis DJ, Lennox M, Pereira MG, Tate KW, Conrad PA, Atwill ER (2007) Climate and on-farm risk factors associated with Giardia duodenalis cysts in storm runoff from California coastal dairies. Appl Environ Microb 73:6972–6979

    Article  Google Scholar 

  • Miller WA, Lewis DJ, Pereira MG, Lennox M, Conrad PA, Tate KW, Atwill ER (2008) Farm factors associated with reducing Cryptosporidium loading in storm runoff from dairies. J Environ Qual 37:1875–1882

    Article  Google Scholar 

  • Muirhead RW, Collins RP, Bremer PJ (2006) The association of E. coli and soil particles in overland flow. Water Sci Technol 54:153–159

    Article  Google Scholar 

  • MUNLV (ed) (2005) Ergebnisbericht Erft; Wasserrahmenrichtlinie in NRW – Bestandsaufnahme [Evaluation report of river Erft; Water Framework Directive in North Rhine-Westphalia - Inventory]. Ministry for Environment, Conservation, Agriculture and Consumer Protection of the State of North Rhine-Westphalia. http://www.flussgebiete.nrw.de/img_auth.php/f/f0/ERF_Bestandsaufnahme_2004_Erft.pdf. Accessed 20 May 2016

  • MURL (1998) Niederschlagswasserbeseitigung gemäß § 51a des Landeswassergesetzes RdErl. d. Ministeriums für Umwelt, Raumordnung und Landwirtschaft IV B 5-673/2-29010/IV B 6-031 002 0901 v. 18.5.1998 [Collecting and Draining Rain Water according to § 51a Water Act of North Rhine-Westphalia, Circular of the Ministry of Environment, Planning and Agriculture IV B 5-673/2-29010/IV B 6-031 002 0901 v. 18.5.1998]

  • Orb R (2012) Rückhalt hygienerelevanter Bakterien in mischwasserbeschickten Retentionsbodenfiltern - Konstruktive Hinweise [Detention of hygienic-relevant bacteria in retention soil filters fed with combined sewer discharge—Construction recommendations]. Dissertation, Karlsruhe Institute of Technology (KIT)

  • Ouyang W, Hao FH, Wang XL, Cheng HG (2008) Nonpoint source pollution responses simulation for conversion cropland to forest in mountains by SWAT in China. Environ Manage 41:79–89

    Article  Google Scholar 

  • Rechenburg A (2008) Vorkommen von Campylobacter spp in Oberflächengewässern. Eintragspfade, Nutzungskonflikte und Gesundheitsgefährdung [Occurence of Campylobacter spp. in surface waters. Pathways, conflicts of use and health risks]. Dissertation, University of Bonn

  • Rechenburg A, Kistemann T (2009) Sewage effluent as a source of Campylobacter sp. in a surface water catchment. Int J Environ Heal R 19:239–249

    Article  Google Scholar 

  • Rechenburg A, Koch C, Claßen T, Kistemann T (2006) Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water. Wat Sci Tech 54:95–99

    Article  Google Scholar 

  • Schreiber C (2011) Einträge, Vorkommen, Verbreitung und gesundheitliche Bedeutung antibiotikaresistenter Bakterien in Abwasser und Gewässern - Ein sozial-ökologischer Beitrag zur Geographischen Gesundheitsforschung [Input, occurence, spread and health impact of antibiotic resistant bacteria in sewage and surface waters—a social-ecological contribution to the Geographical Health Research]. Dissertation, University of Bonn

  • Schreiber C, Kistemann T (2013) Antibiotic resistance among autochthonous aquatic environmental bacteria. Water Sci Technol 67:117–123

    Article  Google Scholar 

  • Schreiber C, Rechenburg A, Rind E, Kistemann T (2015) The impact of land use on microbial surface water pollution. Int J Hyg Envir Heal 218:181–187

    Article  Google Scholar 

  • Schulze E (1996) Hygienisch-mikrobiologische Wasseruntersuchungen. Methoden der biologischen Wasseruntersuchung [Hygienic-microbiological water analysis]. Volume 1. Spektrum Akademischer Verlag, Jena

  • Shen Z-Y, Hong Q, Yu H, Niu J-F (2010) Parameter uncertainty analysis of non-point source pollution from different land use types. Sci Total Environ 408:1971–1978

    Article  Google Scholar 

  • Signor RS, Ashbolt NJ, Roser DJ (2007) Microbial risk implications of rainfall-induced runoff events entering a reservoir used as a drinking-water source. J Water Supply Res T 56:515–531

    Article  Google Scholar 

  • Söntgerath N, Ockenfels A, Beckmann B, Spillecke H (2010) § 51a des Landeswassergesetzes; Beseitigung von Niederschlagswasser [§ 51a Water Act of North Rhine-Westphalia; Disposal of Rainwater]. Neues Wasserrecht für Nordrhein-Westfalen: Praxis-Leitfaden [New Water Act of North Rhine-Westphalia: Best Practice Guide]. Kommunal- und Schul-Verlag, Wiesbaden, pp 174–175

    Google Scholar 

  • Tondera K, Koenen S, Pinnekamp J (2013) Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters. Water Sci Technol 68:1004–1012

    Article  Google Scholar 

  • Tondera K, Klaer K, Roder S, Brueckner I, Strathmann M, Kistemann T, Schreiber C, Pinnekamp J (2015) Developing an easy-to-apply model for identifying relevant pathogen pathways into surface waters used for recreational purposes. Int J Hyg Envir Heal. doi:10.1016/j.ijheh.2015.11.005 Epub ahead of print

    Google Scholar 

  • TrinkwV (2015) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch in der Fassung der Bekanntmachung vom 2. August 2013 (BGBl. I S. 2977), die zuletzt durch Artikel 1 der Verordnung vom 18. November 2015 (BGBl. I S. 2076) geändert worden ist [Trinkwasserverordnung] [German Drinking Water Orcinance]

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    Article  Google Scholar 

  • Waldhoff A (2008) Hygienisierung von Mischwasser in Retentionsbodenfiltern (RBF) [Hygienisation of combined sewer by retention soil filters]. Dissertation, University of Kassel

  • Yaziz MI, Gunting H, Sapari N, Ghazali AW (1989) Variations in rainwater quality from roof catchments. Water Res 23:761–765

    Article  Google Scholar 

Download references

Acknowledgements

The results were achieved in the context of several R&D projects funded by the Ministry for Climate Protection, Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine-Westphalia (Germany). The authors would like to thank the Ministry for the funding and the District Council Cologne for administrative and scientific steering of the projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Schreiber.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler. Provided Funding information has to be tagged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, C., Rechenburg, A., Koch, C. et al. Two decades of system-based hygienic–microbiological research in Swist river catchment (Germany). Environ Earth Sci 75, 1393 (2016). https://doi.org/10.1007/s12665-016-6100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6100-9

Keywords

Navigation