Skip to main content
Log in

A three-dimensional model for flow slides in municipal solid waste landfills using smoothed particle hydrodynamics

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Flow slides at municipal solid waste (MSW) landfills can lead to a leak of toxic MSW and leachate over a large area, and result in serious pollution to the environment in the surrounding region. It is therefore important to predict the propagation of failed MSW in the environment, and then take protective measures. In this paper, a three-dimensional (3D) model based on the smoothed particle hydrodynamics method, which is an improved version of the previous two-dimensional (2D) model (Huang et al. in Waste Manag Res 31(3):256–264, 2013), is established to reproduce the propagation stage of the failed MSW across complex terrain. The Navier–Stokes equations and Bingham model are adopted as the governing equations and constitutive model, respectively. A no-slip boundary condition is incorporated to consider the effect of a solid boundary on the MSW movement. The 3D performance of the new model is verified and evaluated through the simulation of a MSW flow model test. The established 3D model and the former 2D model are applied to simulate a typical flow slide that occurred at the Ümraniye-Hekimbasi landfill. The final shape of the waste deposit simulated with the 3D model well matches the field observation; the performance of the new model in simulating flow slides for MSW in three dimensions across complex terrain is highlighted. The presented model can play a role in defining and mapping hazardous areas, and provide a means for the identification and design of appropriate protective measures for landfills with potential flow slides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Blight GE (2004) A flow failure in a municipal solid waste landfill: the failure at Bulbul, South Africa. In: The skempton conference: advances in geotechnical engineering, Thomas Telford, London, 2, pp 777–788

  • Blight GE (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res 26(5):448–463

    Article  Google Scholar 

  • Blight GE, Fourie AB (2005) Catastrophe revisited: disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23:219–248

    Article  Google Scholar 

  • Bray JD, Zekkos D, Kavazanjian E, Athanasopoulos GA, Riemer MF (2009) Shear strength of municipal solid waste. J Geotech Geoenviron Eng 135(6):709–722

    Article  Google Scholar 

  • Brink DP, Day PW, du Preez L (1999) Failure and remediation of Bulbul Drive landfill: KwaZulu-Natal, South Africa. In: 7th International waste management and landfill symposium, Cagliari, Italy, pp 555–562

  • Brunner PH, Fellner J (2007) Setting priorities for waste management strategies in developing countries. Waste Manag Res 25(3):234–240

    Article  Google Scholar 

  • Caicedo B, Giraldo E, Yamin L, Soler N (2002) The landslide of Dona Juana landfill in Bogota: a case study. In: Proceedings of the 4th international congress on environmental geotechnics (4th ICEG), Rio de Janeiro, Brazil, 11–15 August 2002, pp 171–175

  • Cascini L, Cuomo S, Pastor M, Sacco C (2013) Modelling the post-failure stage of rainfall-induced landslides of the flow type. Can Geotech J 50(9):924–934

    Article  Google Scholar 

  • Chen YM, Luo CY, Ke H (2003) Geotechnical properties of municipal solid waste in China. In: Proceedings of the 12th Asian Regional conference on soil mechanics and geotechnical engineering 1–2, pp 365–368

  • Chugh AK, Stark TD, DeJong KA (2007) Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA. Can Geotech J 44(1):33–53

    Article  Google Scholar 

  • Dai ZL, Huang Y, Jiang FH, Huang MS (2015) Modeling the flow behavior of a simulated municipal solid waste. Bull Eng Geol Environ. doi:10.1007/s10064-015-0735-8

    Google Scholar 

  • Ercolessi F (1997) A molecular dynamics primer. Spring College in Computational Physics, ICTP, Trieste, pp 24–25

    Google Scholar 

  • Fan XM, Rossiter DG, van Westen CJ, Xu Q, Gorum T (2014) Empirical prediction of coseismic landslide dam formation. Earth Sci Process Landf 39(14):1913–1926

    Article  Google Scholar 

  • Gabr MA, Valero SN (1995) Geotechnical properties of municipal solid waste. Geotech Test J 18(2):241–251

    Article  Google Scholar 

  • Ghobadi MH, Babazadeh R, Bagheri V (2013) Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environ Earth Sci 70(4):1823–1840

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed Particle Hydrodynamics: theory and application to non-spherial stars. Mon Not R Astron 181:375–389

    Article  Google Scholar 

  • Haddad B, Pastor M, Palacios D, Munoz-Salinas E (2010) A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation. Eng Geol 114(3–4):312–329

    Article  Google Scholar 

  • Hamilton SM, Reyes DV, Kolb WW (1998) Remediation of a major landfill slope failure in Bogota, Columbia. In: Wastecon/ISWA World Congress, Charlotte, North Carolina, USA, pp 503–519

  • Hendron DM, Fernandez G, Prommer PJ, Giroud JP, Orozco LF (1999) Investigation of the cause of the 27 September 1997 slope failure at the Dona Juana landfill. In: 7th International waste management and landfill symposium, Cagliari, Italy, pp 545–554

  • Huang Y, Dai ZL, Zhang WJ, Huang MS (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag Res 31(3):256–264

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Jafari NH, Stark TD, Merry S (2013) The July 10 2000 Payatas landfill slope failure. Int J Geoeng Case Hist 2(3):208–228

    Google Scholar 

  • Kocasoy G, Curi K (1995) The Ümraniye-Hekimbasi open dump accident. Waste Manag Res 13(4):305–314

    Google Scholar 

  • Koelsch F, Fricke K, Mahler C, Damanhuri E (2005) Stability of landfills-the Bandung dumpsite disaster. In: 10th International waste management and landfill symposium, Sardinia, Cagliari

  • Komatina D, Jovanovic M (1997) Experimental study of steady and unsteady free surface flows with water-clay mixtures. J Hydraul Res 35(5):579–590

    Article  Google Scholar 

  • Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    Article  Google Scholar 

  • Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  • Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  Google Scholar 

  • Liu CL, Zhang Y, Zhang F, Zhang S, Yin MY, Ye H, Hou HB, Dong H, Zhang M, Jiang JM, Pei LX (2007) Assessing pollutions of soil and plant by municipal waste dump. Environ Geol 52(4):641–651

    Article  Google Scholar 

  • Liu ZB, Ma J, Li JM (2009) Stability analysis of the slope of municipal solid waste sanitary landfill. International Symposium on Environmental Science and Technology, Shanghai

    Google Scholar 

  • Liu XL, Si WJ, Zhu CY, Yu W (2010) Analysis on stability of liner system located in slope of municipal solid waste landfill. In: Proceedings of the 7th international symposium on safety science and technology (ISSST), Hangzhou, China. Science Press, Beijing, China

  • Lu L, Wang ZJ, Huang XY, Zheng B, Arai K (2014) Dynamic and static combination analysis method of slope stability analysis during earthquake. Math Probl Eng. doi:10.1155/2014/573962

    Google Scholar 

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  • Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, do Nascimento JCF (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag 30(12):2579–2591

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097

    Article  Google Scholar 

  • Merry SM, Kavazanjian E, Fritz WU (2005) Reconnaissance of the July 10, 2000 Payatas landfill failure. ASCE J Perform Constr Facil 19(2):100–107

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  Google Scholar 

  • Monaghan JJ (2002) SPH compressible turbulence. Mon Not R Astron Soc 335(3):843–852

    Article  Google Scholar 

  • Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    Article  Google Scholar 

  • Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    Google Scholar 

  • Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33:143–172

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Petrone S, Morles MS, Drempetic V, Issler D, Crosta G, Cascini L, Sorbino G (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11(5):793–812

    Article  Google Scholar 

  • Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408

    Article  Google Scholar 

  • Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952–959

    Article  Google Scholar 

  • Stark TD, Huvaj-Sarihan N, Li GC (2009) Shear strength of municipal solid waste for stability analyses. Environ Geol 57(8):1911–1923

    Article  Google Scholar 

  • Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progress Theor Phys 92(5):939–960

    Article  Google Scholar 

  • Thusyanthan NI, Madabhushi SPG, Singh S (2006a) Centrifuge modeling of solid waste landfill systems—part 1: development of a model municipal solid waste. Geotech Test J 29(3):217–222

    Google Scholar 

  • Thusyanthan NI, Madabhushi SPG, Singh S (2006b) Centrifuge modeling of solid waste landfill systems—part 2: centrifuge testing of MSW simulant. Geotech Test J 29(3):223–229

    Google Scholar 

  • Uzuoka R, Yashima A, Kawakami T, Konrod JM (1998) Fluid dynamics based prediction of liquefaction induced lateral spreading. Comput Geotech 22(3/4):234–282

    Google Scholar 

  • Zekkos D, Bray JD, Kavazanjian E, Matasovic N, Rathje EM, Riemer MF, Stokoe KH (2006) Unit weight of municipal solid waste. J Geotech Geoenvironment Eng 132(10):1250–1261

    Article  Google Scholar 

  • Zhan LT, Chen YM, Ling WA (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Eng Geol 97(3–4):97–111

    Article  Google Scholar 

  • Zhao H, Song EX (2012) A method for predicting co-seismic displacements of slopes for landslide hazard zonation. Soil Dyn Earthq Eng 40:62–77

    Article  Google Scholar 

  • Zhu B, Yang CB, Wang L et al (2012) Compounding model MSW and Centrifugal model tests of landfill. In: Proceedings of the 1st China National symposium on coupled phenomena in geomaterials and environmental geotechnics, Hangzhou, pp 425–432 (in Chinese)

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) through Grant No. 2012CB719803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Huang, Y. A three-dimensional model for flow slides in municipal solid waste landfills using smoothed particle hydrodynamics. Environ Earth Sci 75, 132 (2016). https://doi.org/10.1007/s12665-015-4923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4923-4

Keywords

Navigation