Skip to main content

Advertisement

Log in

Aqueous carbonation of the potassium-depleted residue from potassium feldspar–CaCl2 calcination for CO2 fixation

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Based on the academic thought of carbon capture and utilization, a novel process to integrate the potassium extraction from the insoluble potassium feldspar, industrial waste utilization, and the subsequent CO2 fixation using the resultant potassium-depleted residue was proposed in our previous studies. The potassium-depleted residue comprises several Ca-bearing phases, namely wollastonite (CaSiO3), pseudowollastonite (Ca3Si3O9), Cl-mayenite (Ca12Al14O32Cl2), and anorthite (CaAl2Si2O8), which are potential materials for fixation of CO2 via carbonation. In this study, carbonation of the residue was examined with focuses on the effects of reaction temperature, initial CO2 pressure, particle size of the residue, and reaction duration on the carbonation of these Ca-bearing phases. The results demonstrated that both the temperature and CO2 pressure significantly affect the carbonation, while the residue particle size has only minor influence. At 1 MPa CO2 pressure, the carbonation of these components was dominant at different reaction temperatures. Almost complete carbonation of the pseudowollastonite could be achieved at 75 °C, while significant carbonation of the wollastonite takes place above 100 °C. However, the Cl-mayenite and anorthite are incapable of carbonation even at 200 °C. Increasing the CO2 pressure to 4 MPa can lead to a distinct carbonation of the Cl-mayenite at 150 °C but the anorthite remains untouched. At 1.5 MPa CO2 pressure and 150 °C, with the increasing reaction time, the following Ca-bearing species were successively carbonated: first the pseudowollastonite in 5 min after the reaction started, the wollastonite in 5–15 min, and then simultaneously the wollastonite and the pseudowollastonite in 15–45 min, while the carbonation of Cl-mayenite do not begin even after 120 min. A priority sequence of carbonation of these Ca-bearing minerals was determined as follows: pseudowollastonite > wollastonite > Cl-mayenite > anorthite. The trend is in agreement with the results of thermodynamic calculation. Compared to the carbonation of natural wollastonite, the synthesized wollastonite contained in the potassium-depleted residue seems to be more active in carbonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bai MX, Sun JP, Song KP, Reinicke KM, Teodoriu C (2015a) Evaluation of mechanical well integrity during CO2 underground storage. Environ Earth Sci. doi:10.1007/s12665-015-4157-5

    Google Scholar 

  • Bai MX, Sun JP, Song KP, Reinicke KM, Teodoriu C (2015b) Risk assessment of abandoned wells affected by CO2. Environ Earth Sci. doi:10.1007/s12665-015-4163-7

    Google Scholar 

  • Bakr MY, Zatout AA, Mouhamed MA (1979) Orthoclase, gypsum and limestone for production of aluminum salt and potassium salt. Interceram 28(1):34–35

    Google Scholar 

  • Bao WJ, Li HQ, Zhang Y (2010) Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind Eng Chem Res 49(5):2055–2063

    Article  Google Scholar 

  • Béarat H, McKelvy MJ, Chizmeshya AVG et al (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40(15):4802–4808

    Article  Google Scholar 

  • Daval D, Martinez I, Corvisier J et al (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265(1):63–78

    Article  Google Scholar 

  • Hangx SJT, Spiers CJ (2009) Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem Geol 265(1):88–98

    Article  Google Scholar 

  • Hu B, Han XZ, Xiao ZH, Lu YL, Chen M (2005) Distribution of potash feldspar resources in China and its exploitation. Geol Chem Miner 27(1):25–32

    Google Scholar 

  • Hu YP, Zheng CJ et al (2010) Methods for chemical analysis of silicate rocks-Part 3: Determination of silicon dioxide content. China standard: GB/T 14506.3-2010

  • Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation, literature review. Energy Research Centre of the Netherlands ECN, Petten

    Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61(13):4242–4251

    Article  Google Scholar 

  • Jeevaratnam J, Glasser FP, Glasser LSD (1964) Anion Substitution and Structure of 12CaO·7Al2O3. J Am Ceram Soc 47(2):105–106

    Article  Google Scholar 

  • Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy 27(1):193–232

    Article  Google Scholar 

  • Le Quéré C, Peters GP, Andres RJ et al (2013) Global carbon budget 2013. Earth Syst Sci Data Discuss 6(2):689–760

    Article  Google Scholar 

  • Liu W, Zhang HB, Zhou QS, Peng ZH, Qi TG, Li XB, Liu GH (2011) Reaction of tricalcium aluminate hexahydrate (C3AH6) with carbon dioxide. J Cent South Univ Sci Technol 42(3):595–599

    Google Scholar 

  • Liu HJ, Hou ZM, Li XC, Wei N, Tan X, Were P (2015a) A preliminary site selection system for CO2-AGES project and its application in China. Environ Earth Sci. doi:10.1007/s12665-015-4249-2

    Google Scholar 

  • Liu HJ, Hou ZM, Were P, Sun XL, Gou Y (2015b) Numerical studies on CO2 injection—brine extraction process in a low-medium temperature reservoir system. Environ Earth Sci. doi:10.1007/s12665-015-4086-3

    Google Scholar 

  • Ma HW, Bai ZM, Yang J et al (2005) Preparation of potassium carbonate from insoluble potash ores: with 13X molecular sieve as a byproduct. Earth Sci Front 12(1):137–155

    Google Scholar 

  • Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14):1627–1645

    Article  Google Scholar 

  • Munz IA, Brandvoll Ø, Haug TA et al (2012) Mechanisms and rates of plagioclase carbonation reactions. Geochim Cosmochim Acta 77:27–51

    Article  Google Scholar 

  • O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Process 19(2):95–101

    Google Scholar 

  • Peng QJ, Peng LB, Zou XY, Huang C (2003) Study on the extracting potassium from potash feldspar ores with calcium chloride. J Jishou Univ 17(2):185–189

    Google Scholar 

  • Qi ZY, Duan SQ et al (2012) Production and supply of potash fertilizer in China in the recent years and its development forecast. Phosphate Compd Fertil 27(6):1–3

    Google Scholar 

  • Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel-wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46(1):103–107

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, et al (2013) IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA

  • Tai CY, Chen WR, Shih SM (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52(1):292–299

    Article  Google Scholar 

  • Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G (2000) Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water + carbon dioxide, from molecular simulation. Fluid Ph Equilib 170(2):203–234

    Article  Google Scholar 

  • Wang C, Yue HR, Li C et al (2014) Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind Eng Chem Res 53:7971–7978

    Article  Google Scholar 

  • Xie HP, Wang YF et al (2011, 2012) The production of Rich potassium solution and CO2 mineralization. Chinese Patent no 102491795B, 102701798B, 102701253B

  • Xie HP, Liang B, Li C et al (2013) The production of potassium chloride and CO2 fixation. Chinese Patent application number 201310558115.8

  • Xie HP, Wang YF, Ju Y et al (2013b) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58(1):128–132

    Article  Google Scholar 

  • Xu J, Zhang JY, Pan X, Zheng CG (2006) Carbon dioxide sequestration as mineral carbonates. Chin J Chem Eng 57(10):2455–2458

    Google Scholar 

  • Yang H, Prewitt CT (1999) On the crystal structure of pseudowollastonite (CaSiO3). Am Miner 84:929–932

    Google Scholar 

  • Ye LP, Yue HR, Wang YF et al (2014) CO2 mineralization of activated K-feldspar + CaCl2 slag to fix carbon and produce soluble potash salt. Ind Eng Chem Res 53:10565–10577

    Google Scholar 

  • Zhao HQ, Ma HL, J M et al (2003) Study of comprehensive utilization of potassium feldspar soda-lime sintering process. Nonmet Mines 26(1):24–29

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Ministry of Science and Technology (State Key Research Plan 2013BAC12B03) and the National Natural Science Foundation of China (NSFC 21236004, 21336004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Lv, L., Liang, B. et al. Aqueous carbonation of the potassium-depleted residue from potassium feldspar–CaCl2 calcination for CO2 fixation. Environ Earth Sci 73, 6871–6879 (2015). https://doi.org/10.1007/s12665-015-4412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4412-9

Keywords

Navigation