Skip to main content

Advertisement

Log in

Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This article emphasizes landslide susceptibility mapping along Ghat road of Kolli hills, Tamil Nadu, India, using frequency ratio, relative effect and fuzzy gamma operator models with the help of remote sensing data and GIS technique. The purpose of the study is to generate, compare and validate landslide susceptibility zones. Landslide inventory was done with data collected from the State Highways department. There are nine landslide-influencing parameters such as slope gradient, slope aspect, slope curvature, relief, lithology, land use and land cover, proximity to road, proximity to drainage, and proximity to lineament, analyzed with help of topo map, existing geology map and satellite data to produce landslide susceptibility maps. Landslide susceptibility maps were generated by calculating relationship between the landslide-influencing factors with past landslide locations using frequency ratio, relative effect and fuzzy gamma operator models. These landslide susceptibility maps were verified and compared using the existing landslide inventory data. The prediction accuracy of frequency ratio model was 87.93 %, for fuzzy gamma operator model was 87.33 %, and for relative effect model it was 85.26 %. Out of which, the frequency ratio model provide maximum prediction accuracy on landslide susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AGS (2007) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Aust Geomech 42:13–36

    Google Scholar 

  • Ahmad M, Ansari MK, Singh TN (2013) Instability investigations of basaltic soil slopes along SH-72. Geomatics, Natural Hazards and Risk, Nashik. doi:10.1080/19475705.2013.826740

    Google Scholar 

  • Akgul A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51(8):1377–1387

    Article  Google Scholar 

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous Terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Anbazhagan S, Ramesh V (2014) Landslide hazard zonation mapping in Ghat road section of Kolli hills, India. J Mt Sci 11(5):1308–1325

    Article  Google Scholar 

  • Anbazhagan S, Neelakantan R, Arivazhagan S, Vanaraju G (2008) Developments of fractures and land subsidence at Kolli hills, Tamil Nadu. J Geol Soc India 72:348–352

    Google Scholar 

  • Anderson MG, Holcombe E (2013) Community-based landslide risk reduction-managing disasters in small steps. Library of Congress Cataloging-in-Publication Data. The World Bank, Washington, DC

    Book  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Begueria S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Elsevier Butterworth-Heinemann, Oxford, pp 292–302

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. Proceedings of 4th International Symposium on Landslides, Totonto, Canada, vol 1. BiTech Publishers, Vancouver, pp 307–324

    Google Scholar 

  • Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45(1):55–72

    Article  Google Scholar 

  • Capecchi F, Focardi P (1988) Rainfall and landslides: research into a critical precipitation coefficient in an area of Italy. In: Bonnard C (ed) Proceedings of the 5th International Symposium on Landslides. A.A. Balkema, Lausanne, Rotterdam, pp 1031–1136

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS technique and statistical models in evaluating landslide hazard. Earth Surf Process Land Forms 16:427–445

    Article  Google Scholar 

  • Catani F, Lagomarsino S, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831

    Article  Google Scholar 

  • Champati Ray PK, Dimri S, Lakhera RC, Sati S (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, Gupta NK (2010) Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Obs Geoinf 12:340–350

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Chung C-JF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS: Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Das I, Sahoo S, van Weston C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114:627–637

    Article  Google Scholar 

  • Das I, Stein A, Kerle N, Dadhwal VK (2011) Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides 8:293–308

    Article  Google Scholar 

  • Devoli G, Morales A, Hoeg K (2007) Historical landslides in Nicaragua—collection and analysis of data. Landslides 4(1):5–18

    Article  Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256

    Article  Google Scholar 

  • Eastman JR (1995) Decision Support. In: Idrisi for Windows: user’s guide version 1.0. Clark Labs for Cartographic Technology and Geographic Analysis. Clark University, Worcester, Massachusetts

  • Ehret D, Rohn J, Dumperth C, Eckstein S, Ernstberger S, Otte K, Rudolph R, Wiedenmann J (2010) Frequency ratio analysis of mass movements in the Xiangxi catchment, three Gorges reservoir area, China. J Earth Sci 21(6):824–834

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2001) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fernandez Merodo JA, Pastor M, Mira P (2004) Modeling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng 193:2911–2939

    Article  Google Scholar 

  • Ghafoori M, Sadeghi H, Lashkaripour GR, Alimohammadi B (2006) Landslide hazard zonation using relative effect method. The Geological Society of London, IAEG Paper number 474

  • GSI (1995) Geological and mineral map of Tamil Nadu and Pondicherry. Published in 1:500,000 scale by the Director General, Geological Survey of India

  • GSI Report (2006) Geology and mineral resources of the states of India. Part IV-Tamil Nadu and Pondicherry

  • Gupta RP, Joshi BC (1990) Landslide hazard zoning using the GIs approach—a case study from the Ramganga catchment, Himalayas. Eng Geol 28:119–131

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-case study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Year Book Cartogr 7:186–190

    Google Scholar 

  • Kannan M, Saranathan E, Anbalagan R (2013) Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arab J Geosci 6(8):2901–2913

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk 3(1):30–43

    Google Scholar 

  • Kavitha M, Petrou M, Tarantino C, Blonda P (2008) Landslide possibility mapping using fuzzy approaches. IEEE Trans Geosci Remote Sens 46(4):1253–1265

    Article  Google Scholar 

  • Kienholz H, Schneider G, Bichsel M, Grunder M, Mool P (1984) Mapping of mountain hazards and slope stability. Mt Res Dev 4(3):247–266

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Lee S (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ Geol 52:615–623

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysis. J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Proc Land 27:1361–1376

    Article  Google Scholar 

  • Lee S, Choi J, Woo I (2004) The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosci J 8(1):51–60

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38:199–220

    Article  Google Scholar 

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225

    Article  Google Scholar 

  • Mark RK, Ellen SD (1995) Statistical and simulation models for mapping debris-flow hazard, geographical information systems in assessing natural hazards In: Carrara A, Guzzetti F (ed.) Kluwer Academic Publishers, Dordrecht. pp 93–106

  • McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogramm Eng Remote Sens 57(9):1185–1193

    Google Scholar 

  • Mostyn GR, Fell R (1997) Quantitative and semiquantitative estimation of the probability of landslides in landslide risk assessment. In: Cruden D, Fell R (eds) Balkema. Balkema, Rotterdam, pp 297–315

    Google Scholar 

  • Nandi A, Shakoor A (2008) Application of logistic regression model for slope instability prediction in Cuyahoga river watershed, Ohio, USA. Georisk 2(1):16–27

    Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Naranjo JL, van Westen CJ, Soeters R (1994) Evaluating the use of training areas in bivariate statistical landslide hazard analysis—a case study in Columbia. ITC J 3:292–300

    Google Scholar 

  • Naveen Raj T, Ram mohan V, Backiaraj S, Muthusamy S (2011) Landslide hazard zonation using the relative effect method in south eastern part of Nilgiris, Tamil Nadu, India. Int J Eng Sci Technol 3(4):3260–3266

    Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansa, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Okimura T (1982) Situation of surficial slope failure based on the distribution of soil layer. Shin-sabo 35:9–18 (in Japanese with English abstract)

    Google Scholar 

  • Okimura T, Kawatani T (1986) Mapping of the potential surface-failure sites on granite mountain slopes. In: Gardiner V (ed) International geomorphology, Part I. Wiley, New York, pp 121–138

    Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61:1049–1064

    Article  Google Scholar 

  • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci Front 14(6):143–152

    Article  Google Scholar 

  • Pradhan B, Lee S (2009) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Pradhan B, Lee S (2010a) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759

    Article  Google Scholar 

  • Pradhan B, Lee S, Mansor S, Buchroithner M, Jamaluddin N, Khujaimah Z (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2(1):1–11

    Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Appl Geomat 1:3–15

    Article  Google Scholar 

  • Ramani SE, Pitchaimani K, Gnanamanickam VR (2011) GIS based landslide susceptibility mapping of TevankaraiAr sub-watershed, Kodaikkanal, India using binary logistic regression analysis. J Mt Sci 8(4):505–517

    Article  Google Scholar 

  • Saaty TL (1978) Exploring the interface between hierarchies, multiple objectives and fuzzy set. Fuzzy Sets Syst 1:57–68

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: a case study in Garhwal Himalaya, India. Mt Res Dev 15(4):301–309

    Article  Google Scholar 

  • Singh PK, Kainthola A, Singh TN (2013a) Rock mass assessment along the right bank of river Sutlej, Luhri, Himachal Pradesh, India. Geomat Nat Hazards Risk Online. doi:10.1080/19475705.2013.834486

    Google Scholar 

  • Singh R, Umrao RK, Singh TN (2013b) Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: conventional and numerical approaches. Bull Eng Geol Environ. doi:10.1007/s10064-013-0532-1

    Google Scholar 

  • Skempton AW, Delory EA (1957) Stability of natural slopes in London clay. In: Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, vol 2. Butterworths, London, pp 378–381

  • Srivastava V, Srivastava H, Lakhera RC (2010) Fuzzy gamma based geomatic modeling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomat Nat Hazards Risk 1(3):225–242

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probablistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350

    Article  Google Scholar 

  • Tunusluoglu MC, Gokceoglue C, Nefeslioglu HA, Sonmez H (2008) Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environ Geol 54(1):9–22

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. International association of engineering geology, vol 3. UNESCO, Paris

  • Wang HB, Sassa K (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ Geol 47:956–966

    Article  Google Scholar 

  • Wang SQ, Unwin DJ (1992) Modeling landslide distribution on loess soils in China: an investigation. Int J Geogr Inf Syst 6:391–405

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342

    Google Scholar 

  • Yilmaz I (2009a) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Yilmaz I (2009b) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68:297–306

    Article  Google Scholar 

  • Yilmaz I, Keskin I (2009) GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Environ 68:459–471

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bednarik M (2012) Comments on “Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India” by Avtar R, Singh CK, Singh G, Verma RL, Mukherjee S, Sawada H, in Bulletin of Engineering Geology and the Environment (doi:10.1007/s10064-011-0368-5). Bull Eng Geol Environ 71(4):803–805. doi:10.1007/s10064-011-0406-3

    Article  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proceedings of the 5th international symposium on landslides, vol 2. A.A. Balkema, Lausanne, Rotterdam, pp 1269–1272

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. IEEE Inf Control 8:125–151

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Resources Data Management System (NRDMS), Department of Science and Technology, New Delhi, for supporting the project. The authors also thank State Highways and Horticulture departments for providing landslide event and rainfall data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anbazhagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, V., Anbazhagan, S. Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci 73, 8009–8021 (2015). https://doi.org/10.1007/s12665-014-3954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3954-6

Keywords

Navigation