Skip to main content

Advertisement

Log in

Anomalous fluid properties of carbon dioxide in the supercritical region: application to geological CO2 storage and related hazards

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

For supercritical fluids there is a wedge-shaped region called Widom region, where several physico-chemical quantities (e.g. compressibility, heat capacities, density, thermal expansivity, speed of sound) show anomalous behaviour. In this paper, several Widom lines of supercritical CO2 have been computed with the Wagner–Span reference equation of state. The locations of the Widom lines are compared with the PT range of the Snøhvit, Sleipner, Nagaoka and Ketzin reservoirs, which are recently studied for their fitness for CO2 sequestration, and two natural CO2 storage analogues, Montmiral in France and Mihályi-Répcelak in Hungary. The potential consequences of leaking CO2 crossing any of the Widom lines are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Fattah SM, Barghouty MF, Dabbousi BO (2011) Carbon capture and storage: technologies, policies, economics, and implementation strategies, CRC, Boca Raton, Ch. 5

  • Alnes H, Eiken O, Stenvold T (2008) Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics 73:155–161

    Article  Google Scholar 

  • Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65–72

    Google Scholar 

  • Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Manag 41:953–970

    Article  Google Scholar 

  • Baklid A, Korbøl R, Owren G (1996) Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. Society of Petroleum Engineers (SPE), paper 36600

  • Benintendi R (2014) Non-equilibrium phenomena in carbon dioxide expansion. Process Saf Environ Prot 92:47–59

    Article  Google Scholar 

  • Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S (2007) Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet Sci Lett 255:164–176

    Article  Google Scholar 

  • Brazhkin VV, Ryzhov VN (2011) Van der Waals supercritical fluid: exact formulas for special lines. J Chem Phys 135:084503

    Article  Google Scholar 

  • Brazhkin VV, Fomin YuD, Lyapin AG, Ryzhov VN, Tsiok EN (2011) Widom line for the liquid–gas transition in Lennard-Jones system. J Phys Chem B 115:14112–14115

    Article  Google Scholar 

  • Brazhkin VV, Fomin YuD, Lyapin AG, Ryzhov VN, Trachenko K (2012) Universal crossover of liquid dynamics in supercritical region. JETP Lett 95:164–169

    Article  Google Scholar 

  • Brazhkin VV, Fomin YuD, Ryzhov VN, Tareyeva EE, Tsiok EN (2014) True Widom line for a square-well system. Phys Rev E 89:042136

  • Cs Király, Szamosfalvi Á, Falus Gy, Szabó Cs, Sendula E (2013) Expected physical and chemical effects of injecting industrial carbon dioxide on pore fluids and reservoir rocks based on the study of Mihályi-Répcelak natural CO2 occurrence. Magy Geofiz (in Hungarian with English abstract) 54:43–52

    Google Scholar 

  • Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  • Deiters UK (2006) ThermoC. http://thermoc.uni-koeln.de/index.html

  • Edlmann K, Haszeldine S, McDermott C (2013) Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ Earth Sci 70:3393–3409

    Article  Google Scholar 

  • Eshiet K, Sheng Y (2014) Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage. Environ Earth Sci 71:3999–4020

    Article  Google Scholar 

  • Estrada-Alexanders AF, Trusler JPM (1998) Speed of sound in carbon dioxide at temperatures between (220 and 450) K and pressures up to 14 MPa. J Chem Thermodyn 30:1589–1601

    Article  Google Scholar 

  • Gonzalez-Nicieza C, Alvarez-Fernandez MI, Prendes-Gero MB, Pizarro-Garcia C, Oliva-Gonzalez AO (2014) An experiment-based assessment of the feasibility of the CO2 geological storage in unexploited coal beds in northern Spain. Environ Earth Sci 71:3673–3684

    Article  Google Scholar 

  • Han DH, Sun M, Batzle M (2010) CO2 velocity measurement and models for temperatures up to 200 & #xB0;C and pressures up to 100 MPa. Geophysics 75:E123–E129

    Article  Google Scholar 

  • Han WH, Kim K-Y, Choung S, Jeong J, Jung N-H, Park E (2014) Non-parametric simulations-based conditional stochastic predictions of geologic heterogeneities and leakage potentials for hypothetical CO2 sequestration sites. Environ Earth Sci 71:2739–2752

    Article  Google Scholar 

  • Hansen O, Eiken O, Østmo S, Johansen RI, Smith A (2011) Monitoring CO2 injection into a fluvial brine-filled sandstone formation at the Snøhvit field, Barents Sea. Society of Exploration Geophysicists—Expanded Abstract, No. SEG-2011-4092

  • Hansen O, Gilding D, Nazarian B, Osdal B, Ringros P, Kristoffersen J-B, Eiken O, Hansen H (2013) Snøhvit: the history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia 37:356–3573

    Article  Google Scholar 

  • Hepple RP, Benson SM (2003) Implications of surface seepage on the effectiveness of geological storage of carbon dioxide as a climate change mitigation strategy. In: Gale J, Kaya Y (eds) Greenhouse gas technologies, 1. Elsevier, Amsterdam, pp 261–266

    Google Scholar 

  • Imre AR, Tiselj I (2012) Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems. Kerntechnik 77:18–24

  • Imre AR, Maris HJ, Williams PR (eds) (2002) Liquids under negative pressure. NATO Science Series, Kluwer

    Google Scholar 

  • Imre AR, Deiters UK, Kraska T, Tiselj I (2012) The pseudocritical regions for supercritical water. Nucl Eng Des 252:179–183

    Article  Google Scholar 

  • Imre AR, Baranyai A, Deiters UK, Kiss PT, Kraska T, Quiñones-Cisneros SE (2013) Estimation of the thermodynamic limit of overheating for bulk water from interfacial properties. Int J Thermophys 34:2053–2064

    Article  Google Scholar 

  • Kempka T, Kühn M (2013) Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environ Earth Sci 70:3675–3685

    Article  Google Scholar 

  • Kikuta K, Hongo S, Tanase D, Ohsumi T (2005) Field test of CO2 injection in Nagaoka, Japan. In: Proceedings of the 7th Intl. Conf. on Greenhouse Gas Control Technologies, pp 1367–1372

  • Kraska T, Römer F, Imre AR (2009) The relation of interface properties and bulk phase stability: MD simulations of carbon dioxide. J Phys Chem B 113:4688–4697

    Article  Google Scholar 

  • Leneindre B, Tufeu R, Bury B, Sengers JV (1973) Thermal conductivity of carbon dioxide and steam in the supercritical region. Ber Bunsenges Phys Chem 77:262–275

    Google Scholar 

  • Loizzo M, Henninges J, Zimmer M, Liebscher A (2013) Multi-phase equilibrium in a CO2-filled observation well at the Ketzin pilot site. Energy Procedia 37:3621–3629

    Article  Google Scholar 

  • May H-O, Mausbach P (2012) Riemannian geometry study of vapor–liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid. Phys Rev E 85:031201

    Article  Google Scholar 

  • McMillan PF, Stanley HE (2010) Going supercritical. Nat Phys 6:479–480

    Article  Google Scholar 

  • Miles N, Davis K, Wyngaard J (2005) Detecting leakage from CO2 reservoirs using micrometeorological methods. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture program. 2: geologic storage of carbon dioxide with monitoring and verification. Elsevier Science, London, pp 1031–1044

  • NASCENT Report (2005) Natural analogues for the geological storage of CO2. No. 2005/6. (British Geological Survey)

  • NIST Chemistry Webbook (2011). http://webbook.nist.gov/chemistry/

  • Novak K, Malvić T, Simon K (2013) Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ Earth Sci 68:1187–1197

    Article  Google Scholar 

  • Novak K, Malvić T, Velić J, Simon K (2014) Increased hydrocarbon recovery and CO2 storage in Neogene sandstones, a Croatian example: part II. Environ Earth Sci 71:3641–3653

    Article  Google Scholar 

  • Oschwald M, Smith JJ, Branam R, Hussong J, Schik A, Chehroudi B, Talley D (2006) Injection of fluids into supercritical environments. Combust Sci Technol 178:49–100

    Article  Google Scholar 

  • Pártay LB, Jedlovszky P, Brovchenko I, Oleinikova A (2007) Percolation transition in supercritical water: a Monte Carlo simulation study. J Phys Chem B 26:7603–7609

    Google Scholar 

  • Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686. doi:10.1007/s00254-007-0945-x

    Article  Google Scholar 

  • Ringrose P (2010) IEA-GHG Summer School, Svalbard. http://ieaghg.org/docs/General_Docs/Summer_School/Philip_Ringrose_Storage_3.pdf

  • Ringrose P, Eiken O (2011) Sleipner and Snøhvit projects. CSLF Interactive Workshop, Saudi Arabia, 01–02 March 2011, Carbon Sequestration Leadership Forum

  • Schulz FT, Glawe C, Schmidt H, Kerstein AR (2013) Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach. Environ Earth Sci 70:3739–3748

    Article  Google Scholar 

  • Simeoni GG, Bryk T, Gorelli FA, Krisch M, Ruocco G, Santoro M, Scopigno T (2010) The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat Phys 6:503–507

    Article  Google Scholar 

  • Skripov VP (1974) Metastable liquids. Wiley, New York

    Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1000 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  • Suehiro Y, Nakajima M, Yamada K, Uematsu M (1996) Critical parameters of x CO2 + (1 − x) CHF3 for x = (1.0000, 0.7496, 0.5013, and 0.2522). J Chem Thermodyn 28:1153–1164

    Article  Google Scholar 

  • Thiéry R (1996) A new object-oriented library for calculating analytically high-order multivariable derivatives and thermodynamic properties of fluids with equations of state. Comput Geosci 22:801–815

    Article  Google Scholar 

  • Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, Bristol

    Google Scholar 

  • Wang Z, Nur A (1989) Effect of CO2 flooding on wave velocities in rocks with hydrocarbons. SPE Reserv Eng 3:429–436

    Article  Google Scholar 

  • Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70:3709–3726

    Article  Google Scholar 

  • Wilday J, Bilio M (2014) Safety issues for carbon capture and storage. Process Saf Environ Prot 92:1–2

    Article  Google Scholar 

  • Xiang H-W, Deiters UK (2008) A new generalized corresponding-states equation of state for the extension of the Lee-Kesler equation to fluids consisting of polar and larger nonpolar molecules. Chem Eng Sci 63:1490–1496

    Article  Google Scholar 

  • Xu L, Kumar P, Buldyrev SV, Chen SH, Poole PH, Sciortino F, Stanley HE (2005) Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc Natl Acad Sci USA 102:16558–16562

    Article  Google Scholar 

  • Zhong L, Cantrell K, Mitroshkov A, Shewell J (2014) Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites. Environ Earth Sci 71:4261–4272

    Article  Google Scholar 

Download references

Acknowledgments

A. R. Imre gratefully acknowledges an “Albert’s reunion Grant” from the University of Cologne and an invitation as a guest professor at the University of Orléans for 2 months. This work could not have been completed without the support of these two Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Imre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imre, A.R., Ramboz, C., Deiters, U.K. et al. Anomalous fluid properties of carbon dioxide in the supercritical region: application to geological CO2 storage and related hazards. Environ Earth Sci 73, 4373–4384 (2015). https://doi.org/10.1007/s12665-014-3716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3716-5

Keywords

Navigation