Skip to main content

Advertisement

Log in

Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Geological storage of CO2 is considered a solution for reducing the excess CO2 released into the atmosphere. Low permeability caprocks physically trap CO2 injected into underlying porous reservoirs. Injection leads to increasing pore pressure and reduced effective stress, increasing the likelihood of exceeding the capillary entry pressure of the caprocks and of caprock fracturing. Assessing on how the different phases of CO2 flow through caprock matrix and fractures is important for assessing CO2 storage security. Fractures are considered to represent preferential flow paths in the caprock for the escape of CO2. Here we present a new experimental rig which allows 38 mm diameter fractured caprock samples recovered from depths of up to 4 km to be exposed to supercritical CO2 (scCO2) under in situ conditions of pressure, temperature and geochemistry. In contrast to expectations, the results indicate that scCO2 will not flow through tight natural caprock fractures, even with a differential pressure across the fractured sample in excess of 51 MPa. However, below the critical point where CO2 enters its gas phase, the CO2 flows readily through the caprock fractures. This indicates the possibility of a critical threshold of fracture aperture size which controls CO2 flow along the fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amann A, Waschbüsch M, Bertier P, Busch A, Kroossa BM, Littke R (2011) Sealing rock characteristics under the influence of CO2. Energy Procedia 4:5170–5177

    Article  Google Scholar 

  • Angeli M, Soldal M, Skurtveit E, Aker E (2009) Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1:3351–3358

    Article  Google Scholar 

  • Bachu S (2003) Screening and ranking sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289

    Article  Google Scholar 

  • Bachu S, Bennion B (2009) Interfacial tension between CO2, freshwater and brine in the range of pressures from (2 to 27)MPa, temperature from (20 to 125)C and water salinity from (0 to 334000)mg L−1. J Chem Eng Data 54:765–775

    Google Scholar 

  • Blanpied ML, Lockner DA, Byerlee JD (1992) An earthquake mechanism based on rapid sealing of faults. Nature 358:574–576

    Article  Google Scholar 

  • Bouvier JD, Sijpesteijn K, Kleusner DF, Onyejekwe CC, van der Pal RC (1989) Three-dimensional seismic interpretation and fault sealing investigations, Nun River field, Nigeria. Am Assoc Pet Geol Bull 73:1397–1414

    Google Scholar 

  • Branter SRF (2003) The East Brae field, blocks 16/03a, 16/03b, UK North Sea. In Gluyas JG, Hichens HM (eds) United Kingdom oil and gas fields commemorative millennium volume. Geological Society. London. Memoir, vol 20, pp 191–197

  • Busch A, Amann A, Bertier P, Waschbusch M, Kroos BM (2010) The significance of caprock sealing integrity for CO2 storage. In: SPE 139588

  • Cai BY, Yang JT, Guo TM (1996) Interfacial temperature of hydrocarbon + water/brine systems under high pressure. J Chem Eng Data 41:493–496

    Article  Google Scholar 

  • Chadwick A, Arts R, Bernstone C, May F, Thibeau S, Zweigel P (2008) Best practise for the storage of CO2 in saline aquifers—observations and guidelines from the SACS and CO2STORE projects. North Star. BGS

  • Chalbaud C, Robin M, Egermann P (2006) Interfacial tension of CO2/brine systems at reservoir conditions. In: Gale J, Rokke N, Zweigel P, Swenson H (eds) Proceedings of the 8th international conference on greenhouse gas control technology. Elseiver, Amsterdam

  • Chalbaud C, Robin M, Lombard JM, Martin F, Egermann P, Bertin H (2009) Interfacial tension measurements and wettability evaluation for geological CO2 storage. Adv Water Resour 32:98–109

    Article  Google Scholar 

  • Chiquet P et al (2006) CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Convers Mana 46:736–744

    Google Scholar 

  • Chiquet P, Broseta D, Thibeau S (2007) Wettability alteration of caprock minerals by carbon dioxide. Geofluids 7:112–122

    Article  Google Scholar 

  • Chun BB, Wilkinson GT (1995) Interfacial tension in high pressure carbon dioxide mixtures. Ind Eng Chem Res 34:4371–4377

    Article  Google Scholar 

  • Class H (ed) (2009) A benchmark study on problems related to CO2 storage in geologic formations, Summary and discussion of the results. Comput Geosci. 13:409–434

    Google Scholar 

  • De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67(2):563–572

    Article  Google Scholar 

  • Deming D (1994) Factors necessary to define a pressure seal. AAPG Bull 78(6):1005–1009

    Google Scholar 

  • Espinoza DN, Santamarina JC (2010) Water-CO2-mineral systems: interfacial tension, contact angle, and diffusion—implications to CO2 geological storage. Water Resour Res 46:W07537

    Google Scholar 

  • Fenghour A, Wakeham WA, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27(1):31–44

    Article  Google Scholar 

  • Fischer S, Liebscher A, Wandrey M (2010) CO2–brine–rock interaction: first results of long-term exposure experiments at insitu P–T conditions of the Ketzin CO2 reservoir. Chemie der Erde 70(S3):155–164

    Google Scholar 

  • Gaus I (2010) Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89

    Article  Google Scholar 

  • Georgiadis A, Maitland G, Trusler JP, Bismark A (2010) Interfacial tension measurements of the (H2O + CO2) system at elevated temperatures and pressures. J Chem Eng Data 55:4168–4175

    Google Scholar 

  • Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol Soc Lond Spec Publ 233:129–145

    Article  Google Scholar 

  • Handin J, Hager RV Jr, Friedman M, Feather JN (1963) Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. Bull Am Assoc Petrol Geol 47(5):717–755

    Google Scholar 

  • Haszeldine S, Lu J, Wilkinson M, Macleod G (2006) Long timescale interaction of CO2 storage with reservoir and seal: Miller and Brae natural analouge fields North Sea. Greenhouse Gas Control Technology 8, Trondheim 19–22 June

  • Hebach A, Oberhof A, Dahmen N, Kogel A, Ederer H, Dinjus E (2002) Interfacial tension at elevated pressures; measurements and correlations in the water and carbon dioxide system. J Chem Eng Data 47:1540–1546

    Article  Google Scholar 

  • Heuger GJ (1957) Interfacial tension of water against hydrocarbon and other gases and adsorption of methane and solids at reservoir conditions. PhD disertation, The University of Taxas, Austin

  • Hildenbrand A, Schloemer S, Krooss BM, Littke R (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4:61–80

    Article  Google Scholar 

  • Hocott CR (1938) Interfacial tension between water and oil under reservoir conditions up to pressures of 3800 psi and temperature of 180°F. AIME Trans 132:184–190

    Google Scholar 

  • IEA, Energy Technology Perspective (2008a)

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics

  • Ketzer JM, Iglesias R, Einloft S, Dullius J, Ligabue R, De Lima V (2009) Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modelling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochem 24:760–767

    Article  Google Scholar 

  • Koide H, Tazaki Y, Noguchi Y, Nakayama S, Iijima M, Ito K, Shindo Y (1992) Subterranean containment and long term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Convers Manag 33(5–8):619–626

    Article  Google Scholar 

  • Kolditz O, Bauer S, Beyer C, Bottcher N, Dietrich P, Gorke U-J, Kalbacher T, Park C-H, Sauer U, Schutze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking approach for geologic CO2 injection and storage. 2012. Environ Earth Sci 67(2):613–632

  • Kvamme B et al (2007) Measurements and modelling of interfacial tension for water + carbon dioxide systems at elevated pressures. Comput Mater Sci 38(3):506–513

    Article  Google Scholar 

  • Lewicki J, Birkholzer J, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52(2):457–467

    Article  Google Scholar 

  • Li S, Dong M, Li Z, Huang S, Qing H, Nickel E (2005) Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term CO2 storage in the Weyburn field. Geofluids 5:326–334

    Article  Google Scholar 

  • Li Z, Dong M, Li S, Huang S (2006) CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers Manag 47:1372–1382

    Article  Google Scholar 

  • Lindsay NG, Murphy FC, Walsh JJ, Watterson J (1993) Outcrop studies of shale smears on fault surfaces. Int Assoc Sedimentol Spec Publ 15:113–123

    Google Scholar 

  • McDermott CI, Randriamanjatosoa ARL, Tenzer H, Kolditz O (2006) Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35:321–344

    Article  Google Scholar 

  • Nelson PH (2009) Pore-throat sizes in sandstones, tight sandstones and shales. AAPG Bull 93(3):329–340

    Google Scholar 

  • Nygard R, Gutierrez M, Bratli RK, Høeg K (2006) Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Mar Pet Geol 23:201–212

    Article  Google Scholar 

  • Okiongbo KS (2011) Bulk volume reduction of the Kimmeridge Clay Formation, North Sea (UK) due to compaction, petroleum generation and expulsion. Res J Appl Sci Eng Technol 3(2):132–139

    Google Scholar 

  • Ren QY, Chen GJ, Yan W, Guo TM (2000) Interfacial tension of (CO2 + CH4) + water from 298 K to 373 K and pressures up to 30 MPa. J Chem Eng Data 45:610–612

    Article  Google Scholar 

  • Réveillère A, Rohmer J (2011) Managing the risk of CO2 leakage from deep saline aquifer reservoirs through the creation of a hydraulic barrier. Int J Greenh Gas Control 9:62–71

    Google Scholar 

  • Schlomer S, Kroos BM (1997) Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Mar Pet Geol 14(5):565–580

    Article  Google Scholar 

  • Schowalter TT (1981) Prediction of cap rock seal capacity. Bulletin. Am Assoc Pet Geol 65:987

    Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596

    Article  Google Scholar 

  • UK Met Office Data (2010) www.metoffice.gov.uk/climatechange

  • Watts NL (1987) Theoretical aspects of cap rock and fault seals for single and two phase hydrocarbon columns. Mar Pet Geol 4:247–307

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Kwai K, Gale JE (1979) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Google Scholar 

  • Wollenweber J, Alles S, Kronimus A, Busch A, Stanjek H, Krooss BM (2009) Caprock and overburden processes in geological CO2 storage: an experimental Study. Energy Procedia 1:3469–3476

    Article  Google Scholar 

  • Wollenweber J, Alles A, Busch A, Krooss BM, Stanjek H, Littke R (2010) Experimental investigation of the CO2 sealing efficiency of caprocks. Int J Greenh Gas Control 4:231–241

    Article  Google Scholar 

  • Yan W, Zhao G-Y, Chen G-J, Guo T-M (2001) Interfacial tension of (methane + nitrogen) + water and (carbon dioxide + nitrogen) + water systems. J Chem Eng Data 46:1544–1548

    Article  Google Scholar 

  • Yang Y, Aplin AC (2007) Permeability and petrophysical properties of 30 natural mudstones. J Geophys Res 112:B03206

    Google Scholar 

  • Yielding G, Freeman B, Needham DT (1997) Quantitative fault seal prediction. Am Assoc Pet Geol Bull 81:897–917

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh framework Programme FP7/2007-2013 under the grant agreement No. 227286 MUSTANG–A Multiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe and from the Scottish Funding Council for the Joint Research Institute with the Heriot-Watt University which is part of the Edinburgh Research Partnership in Engineering and Mathematics (ERPem). We would like to acknowledge the generous support of Marathon Oil UK Ltd for providing the Kimmeridge Clay caprock samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Edlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edlmann, K., Haszeldine, S. & McDermott, C.I. Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ Earth Sci 70, 3393–3409 (2013). https://doi.org/10.1007/s12665-013-2407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2407-y

Keywords

Navigation