Skip to main content
Log in

An experiment-based assessment of the feasibility of the CO2 geological storage in unexploited coal beds in northern Spain

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The storage of CO2 in unused coal mines is a viable option for reducing emissions of CO2, whose accumulation in the atmosphere is one of the main contributors to global warming. Understanding CO2 behaviour and storage capacity of the coal is an important first step before injecting the CO2. We used experimental equipment to extract coal from a mine and to obtain a representative sample of both its internal structure (in terms of cleats, macropores, mesopores and micropores) and occluded gases. Storage capacity was studied in terms of variations in gas pressure. The adsorption isotherm was experimentally obtained applying a procedure specifically designed to avoid altering the coal. An unused coal bed was selected to determine how much CO2 it could adsorb and to study the feasibility of storing power plant CO2 in this kind of mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez-Fernández MI, González-Nicieza C, Álvarez-Vigil AE, Herrera-García G, Torno S (2009) Numerical modelling and analysis of the influence of local variation in the thickness of a coal bed on surrounding stresses: application to a practical case. Int J Coal Geol 79:157–166

    Article  Google Scholar 

  • Ambrose WA, Breton C, Hovorka SD, Duncan IJ, Gulen G, Holtz MH, Nuñez-Lopez V (2011) Geologic and infrastructure factors for delineating areas for clean coal: examples in Texas, USA. Environ Earth Sci 63:513–532

    Article  Google Scholar 

  • Bauer S, Class H, Ebert M, Feeser V, Gotze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schafer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67:351–367

    Article  Google Scholar 

  • Baumann G, Henninges J (2012) Sensitivity study of pulsed neutron-gamma saturation monitoring at the Altmark site in the context of CO2 storage. Environ Earth Sci 67:463–471

    Article  Google Scholar 

  • Beyer C, Li DD, De Lucia M, Kuhn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67:573–588

    Article  Google Scholar 

  • Day S, Fry R, Sakurovs R (2008a) Swelling of Australian coals in supercritical CO2. Int J Coal Geol 74:41–52

    Article  Google Scholar 

  • Day S, Sakurovs R, Weir S (2008b) Supercritical gas sorption on moist coals. Int J Coal Geol 74:203–214

    Article  Google Scholar 

  • De Lucia M, Bauer S, Beyer C, Kuhn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67:563–572

    Article  Google Scholar 

  • Debelak KA, Schrodt JT (1979) Comparison of pore structure in Kentucky coals by mercury penetration and carbon dioxide adsorption. Fuel 10:732–736

    Article  Google Scholar 

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117

    Article  Google Scholar 

  • Dubinin MM (1966) Chemistry and Physics of Carbon. In: Walker PL (ed) vol 2. Marcel Dekker, New York, p 51

  • Dutta P, Harpalani S, Prusty B (2008) Modeling of CO2 sorption on coal. Fuel 87:2023–2036

    Article  Google Scholar 

  • Eshiet KI, Sheng Y, Ye JQ (2013) Microscopic modelling of the hydraulic fracturing process. Environ Earth Sci 68:1169–1186

    Article  Google Scholar 

  • Gan H, Nandi PL, Walker J (1972) Nature of the porosity in American coals. Fuel 4:272–277

    Article  Google Scholar 

  • Godec M, Kuuskraaa V, Leeuwena TV, Stephen L, Wildgust N (2011) CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 4:2162–2169

    Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity. Academic, London, p 25

    Google Scholar 

  • Griffith CA, Dzombak DA, Lowry GV (2011) Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO2 sequestration. Environ Earth Sci 64:925–948

    Article  Google Scholar 

  • Gutiérrez-Claverol M, Luque-Cabal C (1995) Recursos Geológicos, In: Aramburu C, Bastida F, Geología de Asturias. TREA, Principado de Asturias, Spain, pp 187–202

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linder PJ, Dai X, Maskell K, Johnson CA (2001) IPCC, en Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, USA

  • Keller J, Staudt R (2005) Gas adsorption equilibria: experimental methods and adsoptive isothermas. Springer, New York

    Google Scholar 

  • Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng LE, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284

    Article  Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Bottcher N, Delfs JO, Fischer T, Gorke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599

    Article  Google Scholar 

  • Kronimus A, Busch A, Alles S, Juch D, Jurisch A, Littke R (2008) A preliminary evaluation of the CO2 storage potential in unminable coal beds of the Münster Cretaceous Basin, Germany. Int J Greenh Gas Control 2:329–341

    Article  Google Scholar 

  • Lamert H, Geistlinger H, Werban U, Schutze C, Peter A, Hornbruch G, Schulz A, Pohlert M, Kalia S, Beyer M, Grossmann J, Dahmke A, Dietrich P (2012) Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci 67:447–462

    Article  Google Scholar 

  • Lempp C, Shams KM, Jahr N (2012) Approaches to stress monitoring in deep boreholes for future CCS projects. Environ Earth Sci 67:435–445

    Article  Google Scholar 

  • Lu JM, Partin JW, Hovorka SD, Wong C (2010) Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environ Earth Sci 60:335–348

    Article  Google Scholar 

  • Martens S, Kempka T, Liebscher A, Luth S, Moller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kuhn M (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67:323–334

    Article  Google Scholar 

  • Massarotto P, Golding SD, Bae JS, Iyer R, Rudolph V (2010) Changes in reservoir properties from injection of supercritical CO2 into coal beds: a laboratory study. Int J Coal Geol 82:269–279

    Article  Google Scholar 

  • May F (2012) International viewpoint and news Failed CO2 capture and storage projects-more than missed opportunities. Environ Earth Sci 67:633–636

    Article  Google Scholar 

  • Medek J (1977) Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56:131–133

    Article  Google Scholar 

  • Ministry of Agriculture Food and Environment of Spain (2011) http://www.prtr-es.es/informes/fichacomplejo.aspx?id_complejo=2648,http://www.prtr-es.es/informes/fichacomplejo.aspx?id_complejo=6179. Accessed 10 June 2011

  • Mondal MK, Balsora H, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:431–441

    Article  Google Scholar 

  • Myrttinen A, Becker V, Nowak M, Zimmer M, Pilz P, Barth JAC (2012) Analyses of pre-injection reservoir data for stable carbon isotope trend predictions in CO2 monitoring: preparing for CO2 Injection. Environ Earth Sci 67:473–479

    Article  Google Scholar 

  • Novak K, Malvic T, Simon K (2013) Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ Earth Sci 68:1187–1197

    Article  Google Scholar 

  • Ozdemir E, Morsi BI, Schroeder K (2004) CO2 adsorption capacity of Argonne premium coals. Fuel 83:1085–1094

    Article  Google Scholar 

  • Park YC, Huh DG, Park CH (2012) A pressure-monitoring method to warn CO2 leakage in geological storage sites. Environ Earth Sci 67:425–433

    Article  Google Scholar 

  • Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber B, Dietrich P, Werban U, Vogt C, Richnow HH, Grossmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci 67:335–349

    Article  Google Scholar 

  • Piedad-Sánchez N, Izart A, Martínez L, Suárez-Ruiz I, Elie M, Menetrier C (2004a) Paleothermicity in the Central Asturian Coal Basin, North Spain. Int J Coal Geol 58:205–229

    Article  Google Scholar 

  • Piedad-Sánchez N, Suárez-Ruiz I, Martínez L, Izart A, Elie M, Keravis D (2004b) Organic petrology and geochemistry of the Carboniferous coal beds from the Central Asturian Coal Basin (NW Spain). Int J Coal Geol 57:211–242

    Article  Google Scholar 

  • Pizarro-García C, Álvarez-Fernández MI, González-Nicieza C, Álvarez-Vigil AE, López-Gayarre F (2010) Storage of N2, He and CH4 in coal: study and application in a practical case in the central Asturian coal basin (northern Spain). Int J Coal Geol 81:53–63

    Article  Google Scholar 

  • Saghafi A, Faiz M, Roberts D (2007) CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia. Int J Coal Geol 70:240–254

    Article  Google Scholar 

  • Sánchez de la Torre L, Águeda-Villar J, Colmenero-Navarro JR, González-Lastra J, Salvador-González C, Martín-Llaneza J, Barba-Regidor P (1983) Evolución sedimentaria del Carbonífero en la Cuenca Central de Asturias. Compte Rendu du Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère, Madrid, Spain, 3:187–196

  • Schafer F, Walter L, Class H, Muller C (2012) The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci 65:2037–2049

    Article  Google Scholar 

  • Schutze C, Sauer U, Beyer K, Lamert H, Brauer K, Strauch G, Flechsig C, Kampf H, Dietrich P (2012) Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci 67:411–423

    Article  Google Scholar 

  • Sereshki F (2005) Improving coal mine safety by identifying factors that influence the sudden release of gases in outburst prone zones. Thesis

  • Siemons N, Burch A (2007) Measurement and interpretation of supercritical CO2 sorption on various coals. Int J Coal Geol 69:229–249

    Article  Google Scholar 

  • Sing KS, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Solano-Acosta W, Mastalerz M, Schimmelmann A (2007) Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana. Int J Coal Geol 72:187–208

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) IPCC, en Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate—Change, Cambridge University Press, Cambridge

  • Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2010) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection. Environ Earth Sci 60:227–239

    Article  Google Scholar 

  • Viete DR, Ranjith PG (2007) The mechanical behaviour of coal with respect to CO2 sequestration in deep coal beds. Fuel 86:2667–2671

    Article  Google Scholar 

  • Yamazaki T, Aso K, Chinju J (2006) Japanese potential of CO2 sequestration in coal beds. Appl Energy 83:911–920

    Article  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  Google Scholar 

  • Zhang YQ, Oldenburg CM, Finsterle S (2010) Percolation-theory and fuzzy rule-based probability estimation of fault leakage at geologic carbon sequestration sites. Environ Earth Sci 59:1447–1459

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge their collaboration CARBOMEC, and the Ministry of Industry and Employment of the Principality of Asturias, in particular the Department of Mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celestino Gonzalez-Nicieza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Nicieza, C., Alvarez-Fernandez, M.I., Prendes-Gero, M.B. et al. An experiment-based assessment of the feasibility of the CO2 geological storage in unexploited coal beds in northern Spain. Environ Earth Sci 71, 3673–3684 (2014). https://doi.org/10.1007/s12665-013-2761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2761-9

Keywords

Navigation