Skip to main content

Advertisement

Log in

Subsurface thermal conductivity assessment in Calabria (southern Italy): a regional case study

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Determining the suitability of a local area at a regional or local scale for the geothermal application of low enthalpy systems requires the knowledge of rock thermal conductivity values to evaluate the possibility of low-enthalpy heat exchange. A digital cartographic tool is also needed to synthesize the thermal properties of the underground. This tool should be easily accessible and upgradeable and thus suitable for territorial planning and environmental control. In order to address these key issues, a methodological approach was developed within the framework of the national VIGOR Project, dedicated to evaluating the geothermal potential in southern Italy. In this paper the region of Calabria was selected as a case study. Around 70 samples that were representative of the main geological formations were collected from all over the area. Thermal property tests were carried out both in dry and wet conditions, using a thermal device in accordance with the modified transient plane source method. The thermal conductivity values were then compared with data from the international literature. In order to consider the influence of the entire stratigraphic sequence on the thermal conductivity parameters, a geostatistical analysis of the available lithostratigraphic data was performed using the MATLAB toolbox Modalstrata, specially developed for this purpose. A comprehensive geothermal subsurface characterization of Calabria was thus obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AA VV (2005) Geological Map of Italy, ISPRA-Institute for the Protection and Environmental Research, Italy

  • Alishaev M, Abdulagatov I, Abdulagatova Z (2012) Effective thermal conductivity of fluid-saturated rocks: experiment and modeling. Eng Geol 135–136:24–39

    Article  Google Scholar 

  • ASTM International & American Society for Testing & Materials (2004) Annual book of ASTM standards: thermal insulation; environmental acoustics, vol 04.06. American Society for Testing & Materials

  • Banks D (2012) An introduction to thermogeology. Ground source heating and cooling, 2nd edn. Wiley, New York

  • Böttcher N, Taron J, Kolditz O, Park CH, Liedl R (2012) Evaluation of thermal equations of state for CO2 in numerical simulations. Environ Earth Sci 67(2):481–495

    Article  Google Scholar 

  • Canney B, Dixon C, Mathis N (2001) Three-way thermal conductivity instrument comparison. In: Proceedings Polyurethanes Expo 2001, Columbus, pp 71–74, Sept 30–Oct 3, 2001

  • Cavazza W, Ingersoll RV (2005) Detrital modes of the ionian Forearc basin fill (Oligocene-Quaternary) reflect the Tectonic evolution of the Calabria-Peloritani Terrane (Southern Italy). J Sediment Res 75(2):268–279

    Article  Google Scholar 

  • Cello G, Invernizzi C, Mazzoli S (1996) Structural signature of tectonic processes in the Calabrian Arc, southern Italy: evidence from the oceanic-derived Diamante-Terranova unit. Tectonics 15(1):187–200

    Article  Google Scholar 

  • Cha J, Seo J, Kim S (2012) Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim 109:295–300

    Article  Google Scholar 

  • Cherubini Y, Cacace M, Scheck-Wenderoth M, Moeck I, Lewerenz B (2013) Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck. Environ Earth Sci 70(8):3619–3642

    Article  Google Scholar 

  • Chulli B, Davraz A, Makni J, Bedir M, Dhia HB (2012) Hydrogeological investigations of thermal waters in the Sfax Basin (Tunisia). Environ Earth Sci 66(1):1–16

    Article  Google Scholar 

  • Clarke BG, Agab A, Nicholson D (2008) Model specification to determine thermal conductivity of soils. In: Proceeding Institution of Civil Engineers—Geotechnical Engineering 161(3): 161–168

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: American Geophysical Union edition: rock physics and phase relations—A Handbook of Physical Constants. AGU Reference Shelf 3, pp 105–126

  • Clauser C (2011) Thermal storage and transport properties of rocks, II: thermal conductivity and diffusivity. In: Encyclopedia of Solid Earth Geophysics. Springer, Netherlands, pp 1431–1448

  • Cultrera M, Antonelli R, Teza G, Castellaro S (2012) A new hydrostratigraphic model of Venice area (Italy). Environ Earth Sci 66(4):1021–1030

    Article  Google Scholar 

  • Davis MG, Chapman DS, Van Wagoner TM, Armstrong PA (2007) Thermal conductivity anisotropy of metasedimentary and igneous rocks. J Geophys Res Sol EA 112(B05216):1–7

    Google Scholar 

  • Deming D (1994) Estimation of the thermal conductivity anisotropy of rock with application to the determination of terrestrial heat flow. J Geophys Res 99(11):22087–22091

    Article  Google Scholar 

  • Destro E, Galgaro A, Di Sipio E, Chiesa S, Teza G, Manzella A (2013) GIS-mapping model of low entalphy geothermal potential in Southern Italy (VIGOR PROJECT). In: Proceeding European Geothermal Congress 2013, Pisa, Italy, 3–7 June 2013, ISBN9782805202261

  • Di Sipio E, Chiesa S, Destro E, Galgaro A, Giaretta A, Gola G, Manzella A (2013) Rock thermal conductivity as key parameter for geothermal numerical models. Energy Procedia 40:87–94. doi:10.1016/j.egypro.2013.08.011

    Article  Google Scholar 

  • EGEC (2012) EGEC Geothermal Market Report 2012. EGEC, Brussels, 1–53. http://egec.info/wp-content/uploads/2012/12/EGEC-Geothermal-Market-Report-2012-Geothermal-DH.pdf. Accessed 27 March 2013

  • Feldbusch E, Regenspurg S, Banks J, Milsch H, Saadat A (2013) Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck. Environ Earth Sci 70(8):3447–3458

    Article  Google Scholar 

  • Fidríková D, Greif V, Dieška P, Štofanik V, Kubičár L, Vlčko J (2013) Monitoring of the temperature–moisture regime in St. Martin’s Cathedral tower in Bratislava. Environ Earth Sci 69(4):1481–1489

    Article  Google Scholar 

  • Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chem Erde Geochem 70:13–22

    Article  Google Scholar 

  • Fuchs S, Schütz F, Förster HJ, Förster A (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics 47:40–52

    Article  Google Scholar 

  • Fujii H, Inatomi T, Itoi R, Uchida Y (2007) Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models. Geothermics 36(5):459–472

    Article  Google Scholar 

  • Galson DA, Wilson NP, Schärli U, Rybach L (1987) A comparison of the divided-bar and QTM methods of measuring thermal conductivity. Geothermics 16(3):215–226

    Article  Google Scholar 

  • Grobe M, Richardson RJH, Johnston K, Quibell J, Schillereff HS, Tsang B (2009) Importance of geoscience information in the implementation of closed-loop, ground-source heat pump systems (Geoexchange) in Alberta. Energy Resources Conservation Board, Alberta Geological Survey ERCB/AGS Open File Report 2009–09

  • Gruescu C, Giraud A, Homand F, Kondo D, Do D (2007) Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct 44(3–4):811–833

    Article  Google Scholar 

  • Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62(3):797–804

    Article  Google Scholar 

  • Hall K (2011) Natural building stone composed of light-transmissive minerals: impacts on thermal gradients, weathering and microbial colonization. A preliminary study, tentative interpretations, and future directions. Environ Earth Sci 62(2):289–297

    Article  Google Scholar 

  • Hartmann A, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42(7):1042–1055

    Article  Google Scholar 

  • Holmberg H, Næss E, Evensen JE (2012) Thermal modeling in the Oslo rift, Norway. In Proceeding 37 Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California 1–10, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2012/Holmberg2.pdf. Accessed 27 March 2014

  • Jougnot D, Revil A (2010) Thermal conductivity of unsaturated clay-rocks. Hydrol Earth Syst Sc 14:91–98

    Article  Google Scholar 

  • Krishnaiah S, Singh DN, Jadhav GN (2004) A methodology for determining thermal properties of rocks. Int J Rock Mech Min Sci 41(5):877–882

    Article  Google Scholar 

  • Kušnerová M, Valíček J, Harničárová M, Hryniewicz T, Rokosz K, Palková Z, Bendová M (2013) A proposal for simplifying the method of evaluation of uncertainties in measurement results. Meas Sci Review 13(1):1–6

    Article  Google Scholar 

  • Kuvandykova D, Bateman R (2010) A New transient method to measure thermal conductivity of asphalt. C-Therm Technol 2:1–10, http://files.instrument.com.cn/FilesCenter/20100715/136962.pdf. Accessed 10 March 2014

  • Le Pera E, Sorriso Valvo M (2000) Weathering and morphogenesis in a Mediterranean climate, Calabria, Italy. Geomorphology 34:251–270

    Article  Google Scholar 

  • Li ZC, Wei ZG, Wang C, Zheng ZY, Wei H, Liu H (2012) Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environ Earth Sci 66(4):1091–1097

    Article  Google Scholar 

  • Liebel HT, Stølen MS, Frengstad BS, Ramstad RK, Brattli B (2012) Insights into the reliability of different thermal conductivity measurement techniques: a thermo-geological study in Mære (Norway). Bull Eng Geol Environ 71(2):235–243

    Article  Google Scholar 

  • Mathis N (2000) Transient thermal conductivity measurements: comparison of destructive and nondestructive techniques. High Temp High Press 32(3):321–327

    Article  Google Scholar 

  • Mikulić D, Milovanović B, Gabrijel I (2013) Analysis of thermal properties of cement paste during setting and hardening. In: Akkaya Y, Güneş O (eds) Nondestructive testing of materials and structures. Springer, Netherlands, pp 465–471

    Chapter  Google Scholar 

  • Monaco C, Tortorici L (2000) Active faulting in the Calabrian arc and eastern Sicily. J Geodyn 29(3):407–424

    Article  Google Scholar 

  • Noack V, Scheck-Wenderoth M, Cacace M (2012) Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin). Environ Earth Sci 67(6):1695–1711

    Article  Google Scholar 

  • Noack V, Scheck-Wenderoth M, Cacace M, Schneider M (2013) Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environ Earth Sci 70(8):3523–3544

    Article  Google Scholar 

  • Norden B, Förster A, Behrends K, Krause K, Stecken L, Meyer R (2012) Geological 3-D model of the larger Altensalzwedel area, Germany, for temperature prognosis and reservoir simulation. Environ Earth Sci 67(2):511–526

    Article  Google Scholar 

  • Ondreka J, Rüsgen MI, Stober I, Czurda K (2007) GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—possibilities and limitations. Ren Energ 32(13):2186–2200

    Article  Google Scholar 

  • Park C, Synn JH, Shin HS, Cheon DS, Lim HD, Jeon SW (2004) An experimental study on the thermal characteristics of rock at low temperatures. Int J Rock Mech Min Sci 41(3):367–368

    Article  Google Scholar 

  • Pasquale V, Gola G, Chiozzi P, Verdoya M (2011) Thermophysical properties of the Po Basin rocks. Geophys J Int 186(1):69–81

    Article  Google Scholar 

  • Pasvanoğlu S, Güner A, Gültekin F (2012) Environmental problems at the Nevşehir (Kozakli) geothermal field, central Turkey. Environ Earth Sci 66(2):549–560

    Article  Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306(3–4):345–366

    Article  Google Scholar 

  • Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. In: Thermo-Hydro-Mechanical Coupling in Fractured Rock, Birkhäuser Basel, pp 1137–1161

  • Quick H, Michael J, Arslan U, Huber H (2013) Geothermal application in low-enthalpy regions. Renew Energ 49:133–136. http://dx.doi.org/10.1016/j.renene.2012.01.047

  • RHC-Platform (2012) Strategic Research Priorities for Geothermal Technology. http://www.rhc-platform.org/fileadmin/Publications/Geothermal_SRA.pdf. Accessed 27 March 2014

  • Robertson EC (1988) Thermal properties of rocks. Technical report, United States Department of the Interior—U. S. Geological Survey. http://pubs.usgs.gov/of/1988/0441/report.pdf. Accessed 27 March 2014

  • Rosenbaum G, Lister GS (2004) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23(1):TC1013. doi:10.1029/2003TC001518

  • Rossetti F, Goffé B, Monié P, Faccenna C, Vignaroli G (2004) Alpine orogenic P‐T‐t‐deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian‐Apennine system formation. Tectonics: 23 (TC6011). http://dx.doi.org/10.1029/2003TC001560

  • Sanliyuksel D, Baba A (2011) Hydrogeochemical and isotopic composition of a low-temperature geothermal source in northwest Turkey: case study of Kirkgecit geothermal area. Environ Earth Sci 62(3):529–540

    Article  Google Scholar 

  • Scarciglia F, Le Pera E, Critelli S (2005) Weathering and pedogenesis in the Sila Grande Massif (Calabria, South Italy): from field scale to micromorphology. Catena 61:1–29

    Article  Google Scholar 

  • Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Pergamon, Oxford

    Google Scholar 

  • Schütz F, Norden B (2012) Thermal properties of sediments in southern Israel: a comprehensive data set for heat flow and geothermal energy studies. Basin Res 24(3):357–376

    Article  Google Scholar 

  • Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291(1–4):161–171

    Article  Google Scholar 

  • Spina V, Tondi E, Mazzoli S (2011) Complex basin development in a wrench-dominated back-arc area: tectonic evolution of the Crati Basin, Calabria, Italy. J Geodyn 51(2):90–109

    Article  Google Scholar 

  • Tansi C, Muto F, Critelli S, Iovine G (2007) Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy). J Geodyn 43(3):393–414

    Article  Google Scholar 

  • UNI EN 1936 standard (2007) Natural stone test method—Determination of real density and apparent density, and of total and open porosity. UNI, Italian National Agency for Unification, http://store.uni.com/magento-1.4.0.1/. Accessed 12 March 2014

  • Van Dijk JP, Bello M, Brancaleoni GP, Cantarella G, Costa V, Frixa A, Zerilli A (2000) A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 324(4):267–320

    Article  Google Scholar 

  • Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28(9–11):499–509

    Google Scholar 

  • Waples D, Waples J (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resours Res 13:97–122

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of the VIGOR Project aimed at assessing the geothermal potential and exploring geothermal resources of four regions in southern Italy. VIGOR is part of the activities of the Interregional Programme Renewable Energies and Energy Savings FESR 2007–2013—Axes I Activity line 1.4 “Experimental Actions in Geothermal Energy”. The authors acknowledge the management of the VIGOR Project and in particular Dr. Piezzo of MiSE-DGENRE (Directorate General for Nuclear Energy. Renewable Energy and Energy Efficiency of the Ministry for Economic Development) and Dr. Brugnoli. Director of CNR-DTA (National Research Council of Italy, Department of Sciences of the Earth System and Environmental Technologies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloisa Di Sipio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Sipio, E., Galgaro, A., Destro, E. et al. Subsurface thermal conductivity assessment in Calabria (southern Italy): a regional case study. Environ Earth Sci 72, 1383–1401 (2014). https://doi.org/10.1007/s12665-014-3277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3277-7

Keywords

Navigation