Skip to main content

Advertisement

Log in

Geothermal Characterization of the St. Lawrence Lowlands Sedimentary Basin, Québec, Canada

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Defining temperature at depth to identify geothermal resources relies on the evaluation of the Earth heat flow based on equilibrium temperature measurements as well as thermal conductivity and heat generation rate assessment. Such high-quality geothermal data can be sparse over the region of interest. This is the case of the St. Lawrence Lowlands sedimentary basin covering 20,000 km2 to the south of Québec, Canada, and enclosing only three wells up to a depth of 500 m with equilibrium heat flow measurements. However, more than 250 oil and gas exploration wells have been drilled in this area, providing for this study (parce que c'est 93 sinon) 81 locations with bottom-hole temperature up to a depth of 4300 m, however, not at equilibrium. Analyzing these data with respect to the deep geothermal resource potential of this sedimentary basin requires evaluating the thermal conductivity and heat generation rate of its geological units to properly extrapolate temperature downward. This was done by compiling literature and recent thermal conductivity measurements in outcrop and core samples as well as new heat generation rate estimates from spectral gamma ray logs to establish a first thermal assessment of geological units deep down into the basin. The mean thermal conductivity of the thermal units varies from 2.5 to 6.3 W/m·K, with peak values in the basal sandstones, while the heat generation rate varies from 1.6 to 0.3 µW/m3, decreasing from the upper caprocks toward the base of the sequence. After correcting the bottom-hole temperatures for drilling disturbance with the Harrison correction and subsequently for paleoclimate variations, results indicate a mean geothermal gradient of 23.1 °C/km, varying from 14 to 40 °C/km. Evaluating the basin thermal state from oil and gas data is a significant challenge facilitated by an understanding of its thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Modified from Castonguay et al. (2010), see Figure 1 for location

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Allis, R. G. (1978). The effect of Pleistocene climatic variations on the geothermal regime in Ontario: A reassessment. Canadian Journal of Earth Sciences, 15(11), 1875–1879.

    Article  Google Scholar 

  • Beardsmore, G. R., & Cull, J. P. (2001). Crustal heat flow: A guide to measurement and modeling. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Beck, A. (1957). A steady state method for the rapid measurement of the thermal conductivity of rocks. Journal of Scientific Instruments, 34(5), 186.

    Article  Google Scholar 

  • Beck, A. E. (1977). Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means. Tectonophysics, 41(1–3), 17–39.

    Article  Google Scholar 

  • Bédard, K., Malo, M., & Comeau, F.-A. (2013). CO2 geological storage in the province of Québec, Canada capacity evaluation of the St. Lawrence Lowlands basin. Energy Procedia, 37, 5093–5100.

    Article  Google Scholar 

  • Bédard, K., Raymond, J., Malo, M., Konstantinovskaya, E., & Minea, V. (2014). St. Lawrence Lowlands bottom-hole temperatures: Various correction methods. GRC Transactions, 38, 351–355.

    Google Scholar 

  • Beltrami, H., Matharoo, G. S., Tarasov, L., Rath, V., & Smerdon, J. E. (2014). Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: Implications for terrestrial energy balance. Climate of the Past, 10(5), 1693–1706.

    Article  Google Scholar 

  • Birch, A. F. (1948). The effects of Pleistocene climatic variations upon geothermal gradients. American Journal of Science, 246(12), 729–760.

    Article  Google Scholar 

  • Blackwell, D. D., Negraru, P., & Richards, M. (2006). Assessment of the enhanced geothermal system resource base of the United States. Natural Resources Research, 15(4), 283–308.

    Article  Google Scholar 

  • Blackwell, D. D., & Richards, M. (2004). The 2004 geothermal map of North America, explanation of resources and applications. GRC Transactions, 28, 317–320.

    Google Scholar 

  • Blackwell, D. D., Richards, M., & Stepp, P. (2010). Texas geothermal assessment for the I35 corridor east: Final report. Dallas: SMU Geothermal Laboratory, Southern Methodist University.

    Google Scholar 

  • Bucker, C., & Rybach, L. (1996). A simple method to determine heat production from gamma-ray logs. Marine and Petroleum Geology, 13(4), 373–375.

    Article  Google Scholar 

  • Castonguay, S., Lavoie, D., Dietrich, J., & Laliberte, J.-Y. (2010). Structure and petroleum plays of the St. Lawrence Platform and appalachians in southern Quebec: Insights from interpretation of MRNQ seismic reflection data. Bulletin of Canadian Petroleum Geology, 58(3), 219–234.

    Article  Google Scholar 

  • Chelle-Michou, C., Do, Couto. D., Moscariello, A., Renard, P., & Rusillon, E. (2017). Geothermal state of the deep Western Alpine Molasse Basin, France–Switzerland. Geothermics, 67(Supplement C), 48–65.

    Article  Google Scholar 

  • Chouinard, C., & Mareschal, J. C. (2009). Ground surface temperature history in southern Canada: Temperatures at the base of the Laurentide ice sheet and during the Holocene. Earth and Planetary Science Letters, 277(1–2), 280–289.

    Article  Google Scholar 

  • Comeau, F.-A., Bédard, K., & Malo, M. (2013). Lithostratigraphie standardisée du bassin des Basses-Terres du Saint-Laurent basée sur l’étude des diagraphies. In Institut national de la recherche scientifique. Québec: Rapport de recherche R-1442 (INRSCO2-2013-V1.4). http://espace.inrs.ca/1645/.

  • Crowell, A. (2015). Geostatistical analysis of bottom-hole temperatures in the Denver and Williston Basins: North America. GRC Transactions, 39, 1035–1038.

    Google Scholar 

  • Crowell, A. M., & Gosnold, W. (2011). Correcting bottom-hole temperatures: a look at the Permian Basin (Texas), Anadarko and Arkoma Basins (Oklahoma), and Williston Basin (North Dakota). GRC Transactions, 35, 735–738.

    Google Scholar 

  • Crowell, A. M., Ochsner, A. T., & Gosnold, W. (2012). Correcting bottom-hole temperatures in the Denver Basin: Colorado and Nebraska. GRC Transactions, 36, 201–206.

    Google Scholar 

  • Dietrich, J., Lavoie, D., Hannigan, P., Pinet, N., Castonguay, S., Giles, P., et al. (2011). Geological setting and resource potential of conventional petroleum plays in Paleozoic basins in eastern Canada. Bulletin of Canadian Petroleum Geology, 59(1), 54–84.

    Article  Google Scholar 

  • Emiliani, C. (1961). Cenezoic climatic changes as indicated by the stratigraphy and chronology of deep-sea cores of Globigerina-ooze facies. Annals of the New York Academy of Sciences, 95(1), 521–536.

    Article  Google Scholar 

  • Eppelbaum, L., Kutasov, I., & Pilchin, A. (2014). Applied geothermics. In Lecture Notes in Earth System Sciences. Berlin: Springer.

  • Frone, Z., & Blackwell, D. D. (2010). Geothermal map of the Northeastern United States and the West Virginia thermal anomaly. GRC Transactions, 34, 339–343.

    Google Scholar 

  • Gosnold, W., Majorowicz, J., Klenner, R., & Hauck, S. (2011). Implications of post-glacial warming for northern hemisphere heat flow. GRC Transactions, 35, 795–799.

    Google Scholar 

  • Goutorbe, B., Lucazeau, F., & Bonneville, A. (2007). Comparison of several BHT correction methods: a case study on an Australian data set. Geophysical Journal International, 170(2), 913–922.

    Article  Google Scholar 

  • Grasby, S. E., Allen, D. M., Bell, S., Chen, Z. X., Ferguson, G., & Jessop, A. M., et al. (2012). Geothermal energy resource potential of Canada. Geological Survey of Canada. Open File 6914.

  • Gray, A., Majorowicz, J., & Unsworth, M. (2012). Investigation of the geothermal state of sedimentary basins using oil industry thermal data: case study from Northern Alberta exhibiting the need to systematically remove biased data. Journal of Geophysics and Engineering, 9(5), 534.

    Article  Google Scholar 

  • Guillou-Frottier, L., Mareschal, J.-C., Jaupart, C., Gariépy, C., Lapointe, R., & Bienfait, G. (1995). Heat flow variations in the Grenville Province, Canada. Earth and Planetary Science Letters, 136(3–4), 447–460.

    Article  Google Scholar 

  • Harris, A., Kazachenko, S., Bateman, R., Nickerson, J., & Emanuel, M. (2014). Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS). Journal of Thermal Analysis and Calorimetry, 116(3), 1309–1314.

    Article  Google Scholar 

  • Harrison, W. E., Luza, K. V., Prater, M. L., & Reddr, R. J. (1983). Geothermal resource assessment in Oklahoma. In Oklahoma geological survey. Special paper 83-1.

  • INRS-Pétrole. (1974). Évaluation sédimentologique et pétrophysique du grès de base de 20 forages des Basses-Terres du St-Laurent. In Ministère des Richesses Naturelles du Québec. GM-29990.

  • Jaupart, C., & Mareschal, J. C. (1999). The thermal structure and thickness of continental roots. Lithos, 48(1–4), 93–114.

    Article  Google Scholar 

  • Jaupart, C., & Mareschal, J.-C. (2011). Heat generation and transport in the Earth. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jessop, A. M. (1971). The distribution of glacial perturbation of heat flow in Canada. Canadian Journal of Earth Sciences, 8(1), 162–166.

    Article  Google Scholar 

  • Jessop, A. M. (1990). Thermal geophysics, volume 17, developments in solid earth geophysics. Amsterdam: Elsevier.

    Google Scholar 

  • Jessop, A. M., Allen, V. S., Bentkowski, W., Burgess, M., Drury, M., & Judge, A. S., et al. (2005). The Canadian geothermal data compilation. In Geological Survey of Canada. Open File 4887.

  • Kehle, R. O., Schoeppel, R. J., & Deford, R. K. (1970). The AAPG geothermal survey of North America. Geothermics, 2(1), 358–367.

    Article  Google Scholar 

  • Konstantinovskaya, E., Rodriguez, D., Kirkwood, D., Harris, L. B., & Thériault, R. (2009). Effects of basement structure, sedimentation and erosion on thrust wedge geometry: An example from the Quebec appalachians and analogue models. Bulletin of Canadian Petroleum Geology, 57(1), 34–62.

    Article  Google Scholar 

  • Konstantinovskaya, E., Rutqvist, J., & Malo, M. (2014). CO2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling. International Journal of Greenhouse Gas Control, 22, 88–110.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1970). Crustal temperature and heat production: Implications of the linear heat-flow relation. Journal of Geophysical Research, 75(17), 3291–3300.

    Article  Google Scholar 

  • Lavoie, D. (2009). Porosity and permeability measurements for selected Paleozoic samples in Quebec. In Geological Survey of Canada. Open File 6084.

  • Lefebvre, P., & Trempe, R. (1980). Gradient géothermique dans les Basses-Terres - Rapport #9206. In Ministère des Ressources naturelles et de la Faune, Québec. 1980TA000-01.

  • Lévy, F., Jaupart, C., Mareschal, J. C., Bienfait, G., & Limare, A. (2010). Low heat flux and large variations of lithospheric thickness in the Canadian Shield. Journal of Geophysical Research: Solid Earth, 115(B6), B06404.

    Article  Google Scholar 

  • Ludden, J., & Hynes, A. (2000). The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. Canadian Journal of Earth Sciences, 37(2–3), 459–476.

    Article  Google Scholar 

  • Majorowicz, J., Chan, J., Crowell, J., Gosnold, W., Heaman, L. M., Kück, J., et al. (2014). The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin. Geophysical Journal International, 197(2), 731–747.

    Article  Google Scholar 

  • Majorowicz, J., & Grasby, S. E. (2010). Heat flow, depth-temperature variations and stored thermal energy for enhanced geothermal systems in Canada. Journal of Geophysics and Engineering, 7(3), 232–241.

    Article  Google Scholar 

  • Majorowicz, J., Grasby, S. E., & Skinner, W. R. (2009). Estimation of shallow geothermal energy resource in Canada: Heat gain and heat sink. Natural Resources Research, 18(2), 95–108.

    Article  Google Scholar 

  • Majorowicz, J., & Minea, V. (2012). Geothermal energy potential in the St. Lawrence River area, Québec. Geothermics, 43, 25–36.

    Article  Google Scholar 

  • Majorowicz, J., & Minea, V. (2015a). Geothermal energy potential in low enthalpy Areas as a future energy resource: Identifying feasible targets, Quebec, Canada, Study Case. Resources, 4(3), 524.

    Article  Google Scholar 

  • Majorowicz, J. A., & Minea, V. (2015b). Shallow and deep geothermal energy potential in low heat flow/cold climate environment: northern Québec, Canada, case study. Environmental Earth Sciences, 74(6), 5233–5244.

    Article  Google Scholar 

  • Mareschal, J.-C., & Jaupart, C. (2013). Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524–534.

    Article  Google Scholar 

  • Middleton, M. F. (1982). Bottom-hole temperature stabilization with continued circulation of drilling mud. Geophysics, 47(12), 1716–1723.

    Article  Google Scholar 

  • Minea, V., & Majorowicz, J. (2012). Preliminary assessment of deep geothermal resources in Trois–Rivieres area, Quebec. Geothermal Resources Council Transactions, 36, 709–715.

    Google Scholar 

  • Morgan, P., & Scott, B. (2011). Bottom-hole temperature data from the Piceance Basin, Colorado: Indications for prospective sedimentary basin EGS resources. GRC Transactions, 35, 477–486.

    Google Scholar 

  • Nasr, M. (2016). Évaluation des propriétés thermiques de la Plate-forme du Saint-Laurent: Mesures au laboratoire et approche diagraphique. M.Sc., Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, Québec.

  • Nieuwenhuis, G., Lengyel, T., Majorowicz, J., Grobe, M., Rostron, B. J., & Unsworth, M., et al. (2015). Regional-scale geothermal exploration using heterogeneous industrial temperature data; a case study from the Western Canadian Sedimentary Basin. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 2015.

  • Norden, B., & Förster, A. (2006). Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bulletin, 90(6), 939–962.

    Article  Google Scholar 

  • Pinet, C., Jaupart, C., Mareschal, J.-C., Gariepy, C., Bienfait, G., & Lapointe, R. (1991). Heat flow and structure of the lithosphere in the Eastern Canadian Shield. Journal of Geophysical Research: Solid Earth, 96(B12), 19941–19963.

    Article  Google Scholar 

  • Raymond, J., Malo, M., Comeau, F.-A., Bedard, K., Lefebvre, R., & Therrien, R. (2012). Assessing the geothermal potential of the St. Lawrence sedimentary basin in Québec, Canada. In 39th IAH congress, Niagara Falls, Canada, 2012.

  • Roy, R. F., Blackwell, D. D., & Birch, F. (1968). Heat generation of plutonic rocks and continental heat flow provinces. Earth and Planetary Science Letters, 5, 1–12.

    Article  Google Scholar 

  • Saull, V. A., Clark, T. H., Doig, R. P., & Butler, R. B. (1962). Terrestrial heat flow in the St. Lawrence Lowland of Quebec. Canadian Mining and Metallurgical Bulletin, 65, 63–66.

    Google Scholar 

  • Sippel, J., Fuchs, S., Cacace, M., Braatz, A., Kastner, O., Huenges, E., et al. (2013). Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 70(8), 3545–3566.

    Article  Google Scholar 

  • SNC-SOQUIP. (1979). Rapport sur le potentiel en énergie géothermique de basse énergie dans les Basses Terres du St-Laurent. In Ministère des Ressources Naturelles et de la Faune, Québec. 1979TA000-04.

  • Stein, C. A. (1995). Heat flow of the earth. In T. J. Ahrens (Ed.), Global Earth Physics (pp. 144–158). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Suman, A., & White, D. (2017). Quantifying the variability of paleotemperature fluctuations on heat flow measurements. Geothermics, 67(Supplement C), 102–113.

    Article  Google Scholar 

  • Tran Ngoc, T. D., Doughty, C., Lefebvre, R., & Malo, M. (2013). Injectivity of carbon dioxide in the St. Lawrence Platform, Quebec (Canada): A sensitivity study. Greenhouse Gases: Science and Technology, 3(6), 516–540.

    Article  Google Scholar 

  • Tran Ngoc, T. D., Lefebvre, R., Konstantinovskaya, E., & Malo, M. (2014). Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: Implications for CO2 geological storage. Environmental Earth Sciences, 72(1), 119–146.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2014). Geodynamics (3rd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Weides, S., Moeck, I., Majorowicz, J., Palombi, D., & Grobe, M. (2013). Geothermal exploration of Paleozoic formations in Central Alberta. Canadian Journal of Earth Sciences, 50(5), 519–534.

    Article  Google Scholar 

  • Wellmann, J. F., & Reid, L. B. (2014). Basin-scale geothermal model calibration: Experience from the Perth Basin, Australia. Energy Procedia, 59(Supplement C), 382–389.

    Article  Google Scholar 

  • Westaway, R., & Younger, P. L. (2013). Accounting for palaeoclimate and topography: A rigorous approach to correction of the British geothermal dataset. Geothermics, 48, 31–51.

    Article  Google Scholar 

  • White, D. J., Forsyth, D. A., Asudeh, I., Carr, S. D., Wu, H., Easton, R. M., et al. (2000). A seismic-based cross-section of the Grenville Orogen in southern Ontario and western Quebec. Canadian Journal of Earth Sciences, 37(2–3), 183–192.

    Article  Google Scholar 

  • Zare-Reisabadi, M., Kamali, M. R., Mohammadnia, M., & Shabani, F. (2015). Estimation of true formation temperature from well logs for basin modeling in Persian Gulf. Journal of Petroleum Science and Engineering, 125(Supplement C), 13–22.

    Article  Google Scholar 

Download references

Acknowledgments

The Institut de recherche d’Hydro-Québec (IREQ), the Fonds de recherche du Québec—Nature et technologies (FRQNT) and the Banting Fellowship program are acknowledged for funding this research. Further collaboration from Marc-André Richard, Vasile Minea and James Kendall at the IREQ through guidance of this project was truly appreciated. We thank Dr. Jacek Majorowicz for edifying discussions about heat flow modeling and acknowledge three reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Raymond.

Electronic supplementary material

Appendix

Appendix

Symbol

Explanation

Subscript

Explanation

A

Heat generation rate (µW/m3)

0

At the surface

e

Vertical thickness (m)

A

Geological unit

erf

Error function

e

Effective

[K]

Potassium concentration (%)

i

Average variation between the glacial period and today

λ

Thermal conductivity (W/m·K)

i 1

End of the glacial period

Q

Heat flow (mW/m2)

i 2

Beginning of the glacial period

ρ

Rock density (kg/m3)

pc

Precambrian basement

s

Thermal diffusivity (m2/s)

sed

Sedimentary rocks

t

Glacial period time (s)

  

[Th]

Thorium concentration (ppm)

  

T

Temperature (°C)

  

∆T

Temperature correction (°C)

  

T/∆z

Geothermal gradient (°C/m)

  

[U]

Uranium concentration (ppm)

  

\(\phi\)

Proportion of the thermal unit thickness with a certain thermal conductivity value above the data compared to the total depth of the data

  

Z

True vertical depth (TVD) (m)

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bédard, K., Comeau, FA., Raymond, J. et al. Geothermal Characterization of the St. Lawrence Lowlands Sedimentary Basin, Québec, Canada. Nat Resour Res 27, 479–502 (2018). https://doi.org/10.1007/s11053-017-9363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9363-2

Keywords

Navigation