Skip to main content

Advertisement

Log in

Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper, a bivariate-heuristic model (modified Stevenson’s method) and two multivariate statistical procedures (discriminant analysis and logistic regression) were used in order to assess and map landslide susceptibility in the north-western side of Daunia region (Apulia, Southern Italy). The whole Daunia region is characterized by complex and composite landslides, which are located on clayey slopes, near urban centers, affecting structures and infrastructures. The high predisposition to landsliding of the Daunia hillslopes is related to the very poor strength properties of clayey formations. The comparative analysis of landslide susceptibility using different methods, on the same test site and with the same inventory map allowed understanding the dependence of the results from the dataset and the capability of models under different levels of use, from expert to simple operator. By comparing the performance of the three models through the success rate curves, it emerges that the simple modified Stevenson’s method produces reliable outcomes, comparable with those deriving from more complex multivariate statistical models. This result is related to the characteristics of clayey slopes, in which the landslide occurrence is so much controlled by the poor strength properties of the clayey formations that the multivariate analysis of a large set of morphometric, geological and land-use variables results to be somehow superfluous. This suggests that, for clayey slopes, a simple, easy-to-manage bivariate-heuristic model based on expert opinion can be used with reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akgun A, Turk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):595–611

    Article  Google Scholar 

  • Anbalagan R (1992) Terrain evaluation and landslide hazard zonation for environmental regeneration and land use planning in mountainous terrain. In: Proc VI Int Symp on Landslides, vol 2. Christchurch pp 861–868

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  • Baeza C, Lantada N, Moya J (2010) Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain. Environ Earth Sci 60(1):155–167

    Article  Google Scholar 

  • Bai SB, Wang J, Lü GN, Zhou PG, Hou SS, Xu SN (2009) GIS-based and data-driven bivariate landslide susceptibility mapping in the Three George area, China. Pedosphere 19:14–20

    Article  Google Scholar 

  • Berrnknopf RL, Brookshire DS, Shapiro CD (1988) A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation. Bull Assoc Eng. Geol 24(1):39–56

    Google Scholar 

  • Carrara A (1983) Multivariate methods for landslide hazard evaluation. Math Geol 15:403–426

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environmental. Geomorphology 94:353–378

    Article  Google Scholar 

  • Chowdhury RN (1984) Recent developments in landslide studies: probabilistic methods—state-of-art-report. In: Proc of the IV Int Symp on Landslides, Toronto, vol 1. pp 209–228

  • Chung CF, Fabbri AG (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation technique. Geomorphology 94:438–452

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406

    Article  Google Scholar 

  • Cotecchia V (1963) I dissesti franosi del Subappennino Dauno con riguardo alle strade provinciali. La Capitanata 1:5–6

    Google Scholar 

  • Cotecchia F, Vitone C, Cafaro F, Santaloia F (2006) The mechanical behaviour of intensely fissured high plasticity clays from Daunia. In: Proceedings of the 2nd international workshop on characterization and engineering properties of natural soil, invited lectures, Singapore

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board special report 247. National Academy Press, WA, pp 36–75

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazard 32:1–23

    Article  Google Scholar 

  • Erener A, Düzgün HSB (2010) Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides 7:55–68

    Article  Google Scholar 

  • Forbes AD (1995) Classification-algorithm evaluation: five performance measures based on confusion matrices. J Clin Monit 11:189–206

    Article  Google Scholar 

  • Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73:277–295

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72

    Article  Google Scholar 

  • Glisci C, Spilotro G, Ferrigno L (2003) Analisi di sensibilità ambientale: il rischio di frana secondo Stevenson Modificato. Mappa del territorio del Comune di Potenza. Quaderni di Geologia Applicata, n.2, Pitagora Editrice

  • Gupta RP, Anbalagan R (1997) Slope stability of Theri dam reservoir area, India, using landslide hazard zonation (LHZ) mapping. Q J Eng Geol 30:27–36

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sakar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in Perialpine Slovenia. Geomorphology 74:17–28

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–856

    Article  Google Scholar 

  • Magliulo P (2012) Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ Earth Sci 67(6):1801–1820

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resource Res 30:83–92

    Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: 8th congress of the international association of engineering geology, Vancouver, 21–25 Sept 1998

  • Pankaj J, Van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 112:96–105

    Article  Google Scholar 

  • Pellicani R, Van Westen CJ, Spilotro G (2013) Assessing landslide exposure in areas with limited landslide information. Landslides. doi:10.1007/s10346-013-0386-4

    Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054

    Article  Google Scholar 

  • Puglisi S, Spilotro G, Trisorio Liuzzi G (2005) La frana di Carlantino nel subappennino Dauno e i criteri per la sua sistemazione. AIIA, Conv.: L’Ingegneria Agraria per lo sviluppo sostenibile dell’area Mediterranea, Catania

  • Rapisarda F (2009) Morphometric and landsliding analyses in chain domain: the Rocella basin, NE Sicily, Italy. Environ Geol 58:1407–1417

    Article  Google Scholar 

  • Spilotro G, Fidelibus C, Lenti V (1992) A model for evaluating progressive failure in earth slopes. In: Bell DH (ed) Proc. of 6th Int. Symp. on Landslides, Christchurch. Balkema, Rotterdam, pp 565–571

  • Spilotro G, Coviello L, Trizzigno R (2000) Post failure behaviour of landslide bodies. VIII Int. symp on landslides, Cardiff

    Google Scholar 

  • Stevenson PC (1977) An empirical method for the evaluation ofrelative landslide risk. Bull Int Assoc Eng Geol 16:69–72

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Tangestani MH (2003) Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan catchment area, Iran. Map India Conference 2003, Disaster Management

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphology 115(1–2):141–155

    Article  Google Scholar 

  • Van Westen CJ (1993) Training package for geographic information systems in slope instability zonation, part 1. ITC publication 15, Enschede, p 245

    Google Scholar 

  • Van Westen CJ (2000) The modelling of landslide hazard using GIS. Surv Geophys 21:241–255

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Wang WD, Guo J, Fang LG, Chang XS (2012) A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ Earth Sci 65(6):1705–1714

    Article  Google Scholar 

  • Xu C, Xu XW, Lee YH, Tan XB, Yu GH, Dai FC (2012) The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling. Environ Earth Sci 66(6):1603–1616

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yilmaz C, Topal T, Suzen ML (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ Earth Sci 65(7):2161–2178

    Article  Google Scholar 

  • Zezza F, Merenda L, Bruno G, Crescenzi E, Iovine G (1994) Condizioni di rischio da frana nei comuni dell’Appennino Dauno. Geologia Applicata e Idrogeologia 29:77–141

    Google Scholar 

Download references

Acknowledgments

This work is part of the PhD research of Roberta Pellicani and within the project PRIN08, coordinated by Prof. Giuseppe Spilotro. The authors wish to express their gratitude to the River Basin Authority of Apulia for providing them the available base regional maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pellicani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellicani, R., Frattini, P. & Spilotro, G. Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods. Environ Earth Sci 72, 1097–1108 (2014). https://doi.org/10.1007/s12665-013-3026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-3026-3

Keywords

Navigation