Skip to main content

Advertisement

Log in

Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The reliability of susceptibility maps depends largely on the quality of the information used for its evaluation. This study seeks to analyze the influence of sample size and type on the results of discriminant analysis applied to shallow landslide susceptibility assessment. The study also assesses the role of the terrain unit in discriminant analysis. To this end, two databases based on fieldwork (slope unit) and GIS with 15- and 45-m grid cells (grid cell-based unit), were compared in the same zone at La Pobla de Lillet, Spanish Eastern Pyrenees. The results show that although there is no significant influence of the type of sample, it is necessary to use at least half of the individuals of the sample in order to obtain good results from discriminant analysis. It is the terrain unit that exerts the biggest influence on the result of susceptibility. Some morphometric parameters related to landslides were compared in the databases. The slope unit of the fieldwork database better reflects the land characteristics than the regular grid used by GIS. The values of the variables obtained by GIS procedures are smooth, obtaining mean errors for the slope angle variable of 19.5 and 33.5% for the grids of 15 and 45 m, respectively, in the study area. One-way and T tests demonstrate that the smoothness of the values exerts a decisive influence on the discriminant results. Kappa’s analysis shows that there is no significant equivalence between some of the categorical variables used in both databases. The use of these variables demand the application of clearly defined criteria. The cell size should match the dimensions of the phenomenon analyzed given the unsuitability of the grid of 45 m in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Baeza C (1994) Evaluación de las condiciones de rotura y de la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. Ph.D. thesis. Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia. Barcelona, Spain

  • Baeza C, Corominas J (1997) Susceptibility analysis of shallow landsliding by multivariate techniques. In: The third annual conference of the international association for mathematical geology. Barcelona 2:928–936

    Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Proc Land 26:1251–1263

    Article  Google Scholar 

  • Bewick V, Cheek L, Ball J (2004) Statistics review 9: one-way analysis of variance. Crit Care 8(2):130–136

    Article  Google Scholar 

  • Bonin O, Rousseaux F (2005) Digital terrain model computation from contour lines: how to derive quality information from artifact analysis. Geoinformatica 9(3):253–268

    Article  Google Scholar 

  • Carla R, Carrara A, Bitelli G (1997) Comparison of techniques for generating digital terrain models from contour lines. Int J Geogr Inf Sci 11(5):451–473

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

  • Chan Y, Walmsley RP (1997) Learning and understanding the Kruskal–Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys Ther 77(12):1755–1761

    Google Scholar 

  • Chung C, Fabbri A (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Chung C, Kojima H, Fabbri A (2002) Stability analysis of prediction models for landslide hazard mapping. In: Allison RJ (ed) Applied geomorphology: theory and practice. Wiley, Chichester, pp 3–19

  • Clerici A, Guzzetti F, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48(4):349–364

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

    Article  Google Scholar 

  • Corominas J, Alonso E (1990) Geomorphological effects of extreme floods (November 1982) in the Southern Pyrenees. In: 2nd symposium of hydrology in mountainous regions artificial reservoirs: water and slopes, Lausanne 194:295–302

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545

    Article  Google Scholar 

  • Dillon WR, Goldstein M (1986) Multivariate analysis. Methods and applications. Wiley, New York, pp 587

    Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • ESRI (2008) ESRI: GIS and mapping software

  • Gallart F, Clotet N (1988) Some aspects of the geomorphic processes triggered by an extreme rainfall event: the November 1982 flood in the Eastern Pyrenees. Catena 13:79–85

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602

  • Hürlimann M, Baeza C (2002) Analysis of debris-flow events in the Eastern Pyrenees, Spain. In: First European conference on landslides, Praga, pp 213–220

  • Israel GD (2008) Determining sample size. University of Florida IFAS extension. Publication #PEOD6

  • Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Meijerink AMJ (1988) Data acquisition and data capture through terrain mapping units. ITC J 7:23–44

    Google Scholar 

  • Muñoz JA, Martínez A, Vergés J (1986) Thrust sequences in the Spanish Eastern Pyrenees. J Struct Geol 8(3/4):399–405

    Article  Google Scholar 

  • Ohlmacher G, Davis J (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Prat A, Tort-Martorell X, Grima P, Pozueta L (1997) Métodos estadísticos. Control y mejora de la calidad. Barcelona, pp 300

  • Puigdefábregas C, Serrat D, Vilaplana JM (1979) El medi geològic. In: Folch R (ed) Patrimoni natural d’Andorra. Ketres, Barcelona, pp 15–39

  • Remondo J, González-Díez A, Díaz de Terán JR, Cendrero A (2003) Landslide susceptibility models using spatial data analysis techniques. A case study from the Lower Deba Valley, Guipúzcoa (Spain). Nat Hazards 30:267–279

    Article  Google Scholar 

  • Rodríguez J (1993) Métodos de muestreo. Casos prácticos. Madrid, pp 181

  • Santacana N (2001) Análisis de la susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de sistemas de información geográfica. Aplicación a la cuenca alta del río Llobregat. Ph.D. thesis, Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia, Barcelona, Spain

  • Santacana N, Baeza C, Corominas J, De Paz A, Marturià J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Skidmore AK (1989) A comparison of techniques for calculating gradient and aspect from gridded elevation data. Int J Geogr Inf Syst 3:323–334

    Article  Google Scholar 

  • Spiegel MR (2002) Estadística. McGraw-Hill, Madrid

    Google Scholar 

  • Van Westen CJ (1993) Application of Geographical Information System to landslide hazard zonation. International Institute for Geo-Information Science and Earth Observation (ITC), I.-P. ITC. Enschede, The Netherlands, p 245

  • Wise SM (1998) The effect of GIS interpolation errors on the use of digital elevation models in geomorphology, in landforms monitoring, modelling and analysis. Wiley, Chichester

    Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Cartographic Institute of Catalonia for providing the large-scale DEM of the study area. Nuria Santacana provided detailed information and comments for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Baeza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeza, C., Lantada, N. & Moya, J. Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain. Environ Earth Sci 60, 155–167 (2010). https://doi.org/10.1007/s12665-009-0176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0176-4

Keywords

Navigation