Mean wake
Figure 2 illustrates the mean streamwise velocity U distribution over the region \(-\,0.4<x/D<0.9\). Similar to most of the wind turbine wake studies, we focus on the part of the wake away from the tower. Note that in our study, the tower was installed upside down, due to physical constraints of the facility (Fig. 1c).
As expected, significant velocity deficit can be seen in the wakes behind all three configurations, indicating a large amount of the incoming flow’s kinetic energy being consumed. The DRWT(L) featuring the larger auxiliary rotor shows the greatest velocity deficit, closely followed by the DRWT(S), both have greater deficit than SRWT at the end of the FOV. This is confirmed by the U distribution along the radial direction, as it is shown in Fig. 3a. It shows that the free stream velocity \(U_{\infty }\) is fully recovered at \(|y/D|=0.6\) by \(x=0.9D\). Figure 2 shows that the velocity deficit area is roughly cone shaped, gradually expands starting at the main rotor tips. The slight overshoot of U (\(>U_{\infty }\)) at \(y/D=-0.6\) in Fig. 3a is because of the induced velocity caused by the three winding helical vortex cores originating from the main rotor blades, which will be investigated later. It shows that the width of the wake for the three configurations are very similar, with the wake of DRWT(L) marginally wider. This is consistent with the findings of Ozbay (2014) who also found the wake width behind an SRWT and DRWT to be almost identical and consequently dependent on the size of the main rotor, which has also been kept constant there. This establishes that it is not the wake shape that changes with the addition of an auxiliary rotor, but the characteristics within it, further supported visually by Fig. 2.
The fact that the obvious quicker velocity recovery is seen in the SWRT for \(-\,0.5\lesssim y/D\lesssim -0.2\) (Fig. 3a) confirms that the auxiliary rotors of the DRWTs capture a large proportion of the kinetic energy of the flow at the main rotor root region, otherwise missed by the SRWT. This is consistent with existing knowledge that DRWTs are able to yield a higher power output than conventional horizontal-axis SRWTs (Ozbay 2014; Herzog et al. 2010). Over the same region, Fig. 2 shows that DRWT(S) has the highest density of contour lines followed closely by DRWT(L). This can also be inferred by \(\partial {U}/\partial {y}\) derivable from Fig. 3a. This suggests that the velocity gradient in the radial direction, and therefore shear strength, is larger for the DRWTs when compared to the SRWT. Ozbay (2014) demonstrated that the presence of high shear is prone to flow instability and hence promotive of turbulent mixing. This turbulent mixing is desired to breakdown the cone-shaped shear layer, caused by tip vortices as shown in Sect. 1, in order to accelerate the process of wake recovery.
Figure 3b shows the U deficit with axial distance at hub height. The profiles differ significantly within the region \(0<x/D<0.3\) , wherein the auxiliary rotors of the DRWTs resulting in a larger velocity deficit in the immediate near wake. Beyond this distance, U behaviours are very similar among the three. By the end of the measurement range, U at hub height continues dropping, but it can be expected that it will eventually recover to \(U_{\infty }\) as the wake dissipated. Whether or not the U distributions of the three remain similar further downstream requires further investigation.
Figure 3b also shows that U of the DRWT(L) is consistently lower than the other two configurations, suggesting the former is slightly superior at extracting energy from the wind. This agrees with the findings of Jung et al. (2005) who stated that using a secondary rotor \(\approx 50\%\) the size of the main rotor sees the best performance in the context of power output, yielding the highest power coefficient.
Phase-averaged wake
As the rotation rate of the rotors is fixed, it is expected that the wake behind all the configurations manifests a periodic feature, at a frequency of \(m\varOmega /(2\pi )\). Since the samples were acquired at a fixed low frequency in a statistically independent way, without phase locking by an external phase indicator, the phase of the wake is resolved using the snapshot-based proper orthogonal decomposition (POD) (Berkooz et al. 1993). POD is a suitable but not unique tool to extract coherent flow structures from both turbulent velocity data, e.g. Wang et al. (2020), and passive scalar data, e.g. He and Liu (2017). [Other techniques, e.g. wavelet transform (Fijimoto and Rinoshika 2017), might also be suitable for the similar purposes under special circumstances.]
Briefly speaking, for a set of N snapshots of the fluctuation components, \((u',v')\), an auto-covariance matrix M is constructed where solving the standard eigenvalue problem produces N eigenvalues \(\lambda _{i}\), and N eigenvectors \(A_i\).
$$\begin{aligned} MA _{i}=\left( {\hat{U}}^T{\hat{U}}\right) A_{i}=\lambda _{i}A_{i}, \end{aligned}$$
(2)
where \({\hat{U}}=[u'_1\ldots u'_N,v'_1\ldots v'_N]\), combining both velocity components. The associated POD mode, \(\varPhi _{i}\) can be calculated as:
$$\begin{aligned} \varPhi _i=\frac{\sum _{n=1}^NA_{i,n}(u'_n,v'_n)}{\Vert \sum _{n=1}^NA_{i,n}(u'_n,v'_n) \Vert }, \; i=1,2,\ldots N. \end{aligned}$$
(3)
The eigenvalue \(\lambda _{i}\) reflects the contribution of mode \(\varPhi _{i}\) to the total fluctuating energy of the flow. The instantaneous velocity field can then be represented as a sum of orthogonal modal contributions as
$$\begin{aligned} (u,v)=(U,V) + \sum _{i=1}^N a_{i}\varPhi _{i}, \end{aligned}$$
(4)
where \(a_{i}\) is the coefficient that is obtained by projecting the instantaneous velocity fields on the POD basis. That is
$$\begin{aligned} a_i=[\varPhi _1\;\varPhi _2\ldots \;\varPhi _N]^T(u'_i,v'_i). \end{aligned}$$
(5)
The ranking of the modal energy contribution, viz. \(\lambda _i\) percentage, is given in Fig. 4a. It shows that \(\lambda _1\) and \(\lambda _2\), corresponding to \(\varPhi _1\) and \(\varPhi _2\), in total contribute 3.2%, 3.3% and 3.5% of the energy for the SRWT, DRWT(S) and DRWT(L) configurations, respectively, which are fairly similarly small. Higher modes contribute less than 1.5% each. This means that the wake behind all the three turbine configurations is very turbulent, and the energy contained in the coherent structures is relatively small. Contribution of \(\lambda _1\)–\(\lambda _4\) of the two DRWTs are similar, more than that of SRWT. From \(\lambda _5\) onwards, all the configurations become very similar in \(\lambda _i\). SRWT gains a small fraction back at higher mode \(i\gtrsim 25\), which are unimportant due to incoherency.
Figure 4b illustrates the projection of the (normalised) \(a_1\) and \(a_2\) on to the polar coordinates, with the associated mode \(\varPhi _1\) and \(\varPhi _2\) presented in (c), in terms of vorticity derived from the modal velocity. It is evident from (c) that the first two modes reflect a periodic vortex shedding pattern, and this is confirmed by the rather homogeneous angular distribution in (b). This suggests that \(a_{1}=\sqrt{2\lambda _{1}}\sin (\phi )\) and \(a_{2}=\sqrt{2\lambda _{2}}\cos (\phi )\) with \(\phi\) representing the vortex shedding phase angle (Oudheusden et al. 2005). Phase averaging can be done by defining a sample bin size, in this study \(\pm\,10^{\circ }\), to ensure a sample size of \(55\pm 5\) in each bin (phase). An example of a bin centred at an arbitrary phase is shown in (b). At this phase, the averaged vorticity field (\(\omega\)), using the raw instantaneous velocity (u, v), is shown in (d) and the contour of the swirling strength \(\lambda _{ci}\) is shown in (e). \(\lambda _{ci}\) is the imaginary part of the complex eigenvalue of the (phase-averaged) velocity gradient tensor, which provides a measure of the swirl strength to allow shear layer to be excluded from detections (Zhou et al. 1999).
The coherent vortices shed from the main rotor tips are clearly shown in Fig. 4d after phase averaging. Also seen is the area of vorticity originates from the small auxiliary rotor. These vorticity, in the form of shear layer, fails to form any coherent vortex packets due to the interference of the main rotor downstream. At the same tip speed ratio \(\varLambda\), the auxiliary rotor and the main rotor rotate at different rates, having different vortex shedding frequency captured in FOV. It is confirmed in (e) that no strong swirl is observed in this area, while clear swirling vortex cores can be seen downstream of the main rotor. POD analysis of the sub-region excluding the main rotor vortices also do not show evidence of periodic shedding from the auxiliary rotor; figure not shown.
Figure 5 shows three successive wake phases from \(\phi =\pi /4\) behind all three configurations. As the phase angle increases, the tip vortices shed from one main rotor blade can be seen to align sequentially with the vortices shed from the other two blades of the same rotor. The distance between the neighbouring vortices is found to be fairly constant among the three configurations and over the entire FOV, which is about 0.15D. Since the vortices are convected downstream by the local velocity and the rotation rate of the main rotor remains constant, this suggests that the auxiliary rotor does not impact on the local mean velocity in the wake, in agreement with Fig. 2.
The trace of the turbine root vortices is also observable in the wake behind SRWT, but not in a coherent pattern in-phase with the tip vortices. This might be because of the particular blade shape used inhibiting coherent vortex shedding in the root part. In comparison, the influence of the smaller auxiliary rotor is clearly seen in the wake of DRWT(S), where stronger vorticity is seen as highlighted by the blue box. This shear layer is also reflected in the U profile at the end the FOV in Fig. 2a, where a ‘step’ is seen for \(0.4\lesssim |y/D|\lesssim 0.5\). This shear layer has the same sense of direction as the main rotor tip vortices in the x–y plane, but should have an opposite swirl direction as the main rotor helical wake due to the counter-rotating auxiliary rotor. This could be beneficial as it counteracts the main rotor tip wake swirl.
The strength of this shear layer is appreciably lower in DRWT(L). This is because the vortices shed by the larger auxiliary rotor are entrained into the main rotor vortices, attributed to their closer radial distance. This is also the reason for the stronger vortices (both size and \(\omega\) magnitude) behind DRWT(L). The vortex interaction also tends to distort the shape of the vortices for \(x>0.7D\).
The negative \(\omega\) is negligible hence not included in Fig. 5. Note that although the auxiliary rotor rotates in the opposite direction as the main rotor, because of its mirrored blade geometry, the two rotors shed vortices in the same sense in x–y plane.
It is so far clear that the main rotor tip vortices still play a dominant role, acting as a barrier preventing wake re-energisation. Its evolution is further analysed next. The vortex centre trajectory is shown in Fig. 6a. The vortex centre is found by the \(\lambda _{ci}\) weighted centroid; see Fig. 4e. The trajectory behind all three configurations are very similar, with a very small rate of expansion, weakly increasing from SRWT, DRWT(S) to DRWT(L), under the influence of the auxiliary rotor vortices.
Figure 6b displays the decay of circulation \(\varGamma\) of the tip vortex packets, where \(\varGamma =\int _S\omega \;{\mathrm {d}}s\) for S denoting the vortex packet area based on a universal threshold \(\omega L/U_{\infty }=0.4\), about \(6\%\) of the peak vorticity value in Fig. 5. The \(\varGamma\) decay can be well-described by an exponential function \(\varGamma =\varGamma _0 \exp \left[ -\alpha _{\varGamma } (x/D)\right]\). At the main rotor tips \(x=0\), \(\varGamma _0/LU_{\infty }=0.11, 0.087\) and 0.141 for SRWT, DRWT(S) and DRWT(L), respectively. In consistency with Fig. 5, DRWT(L) have the strongest vortices in the wake, due to the auxiliary rotor vortices entrained and also the weaker vorticity connected with the auxiliary vortices shear region. Interestingly, DRWT(S) has the vortices of the lowest \(\varGamma\), even lower than SRWT. Close examination of Fig. 5 suggests that the influence of the smaller auxiliary rotor is to take the background vorticity near the main rotor vortices away from them and deliver that to the root vortices area.
The \(\varGamma\) decay rates are found to be similar among the three, with \(\alpha _{\varGamma }=0.20, 0.23\) and 0.24, respectively. In particular for the two DRWTs, their decay rates are nearly identical. This suggests that the size of the auxiliary rotors does not have a large impact on the tip vortices decay rate. However, compared to SRWT, incorporation of the auxiliary rotors does increase it, very weakly, due to the vortex interaction.
Similarly, the peak vorticity at the vortex centroids also displays an exponential decay described by \(\omega _p=\omega _0\exp \left[ -\alpha _{\omega } (x/D)\right]\); see Fig. 6c. The decay rate \(\alpha _{\omega }=0.60, 0.51\) and 1.33 for SRWT, DRWT(S) and DRWT(L), respectively. It is clear that DRWT(L) sees the most rapid \(\omega _p\) decay, while that for SRWT and DRWT(S) is similar. If the \(\omega\) profile of the vortices are assumed to be close to Gaussian, it is possible to deduce the x dependence of the characteristic vortex size r, combining the \(\varGamma\) and \(\omega _p\) behaviour. That is \(r\sim \exp \left( \alpha _r x\right)\), where \(\alpha _r=(\alpha _{\omega }-\alpha _{\varGamma })/2=0.2, 0.14\) and 0.55. This means that r gradually increases due to vorticity diffusion, and this rate is the fastest for DRWT(L). At \(x=0\), extrapolation of the exponential relations find \(\omega _{0}L/U_{\infty }=5.6, 6.1\) and 9.0 for the three configurations, respectively.
Turbulence kinetic energy
Finally, we take a look into the fluctuating velocities. Without knowing the out-of-plane velocity component w, TKE in this study is defined as
$$\begin{aligned} {\mathrm {TKE}}=\frac{1}{2}\left(\overline{u^{'}u^{'}} + \overline{v^{'}v^{'}}\right), \end{aligned}$$
(6)
where \(\overline{u^{'}u^{'}}\) and \(\overline{v^{'}v^{'}}\) are the normal stress in the x and y directions, respectively. Figure 7 depicts TKE contour for all three turbine configurations. Consistent with the finding that the wake width is mainly dependent on the vortex core trajectory, and is therefore very similar behind the three turbines, the TKE distribution patterns are also similar. Very close to the main rotor surface, the TKE intensity behind SRWT appears higher than the two DRWTs, where part of the free stream wind energy is absorbed by the auxiliary rotors. In DRWT(S), higher TKE intensity can vaguely be seen just above and below the vortex core trajectory, while in DRWT(L) higher TKE can only be seen below. This is in line with the visualisation shown in Fig. 5, where auxiliary rotor vortices are entrained to the main rotor vortices behind DRWT(L).
Figure 8 demonstrates the change of the fluctuating velocity root mean square, \(u(\mathrm{rms})\), along the vortex centroid trajectory, where \(u(\mathrm{rms})=\sqrt{\mathrm {TKE}}\). Up to the end of the FOV, the magnitude and the decay rate of \(u(\mathrm{rms})\) are found to be similar among all the three configurations. For \(x>0.5D\), \(u(\mathrm{rms})\) is the highest for DRWT(L) and lowest for DRWT(S). This is in agreement with the evolution of the \(\varGamma\) magnitude shown in Fig. 6b. The fluctuating velocity \((u',v')\) is obtained from subtracting the time mean from the instantaneous velocities, and hence consists of both coherent mean (for periodic flows) and random turbulence. High random turbulence intensity contributes to the dissipation of helical wake and consequent wake re-energisation deeming it, at appropriate regions, a desirable quantity for the application. The phase-averaged vortices discussed in Sect. 3.2 are coherent mean which contribute significantly to the fluctuating velocities. The \(u(\mathrm{rms})\) intensity around the vortex cores is thus a manifestation of the circulation \(\varGamma\) of the vortex packets. The similar \(u(\mathrm{rms})\) decay rates for \(x>0.5D\) cannot be fitted with a simple exponential function. However, they are also in consistence with the decay rate of \(\varGamma\) in Fig. 6a.