Skip to main content
Log in

From Agri-food Wastes to Enzyme Production: A Systematic Review with Methodi Ordinatio

  • Review article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Responsible resource management is crucial, mainly on the challenge represented by food and agro-industrial wastes. These wastes have significant environmental impacts. Government and scientists are looking for ways to value these materials and the use of these residues to produce enzymes is a promising alternative.

Methods

This systematic review provides a comprehensive analysis of scientific production related to the use of agri-food wastes to produce enzymes through microbial processes. The Methodi Ordinatio, a methodology for collecting, classifying and, selecting scientific articles, was chosen to evaluate trends and challenges in this field of research.

Results

We selected 114 relevant articles out of 608 on the main subject. Brazil, India, and China were the leading countries in publications, accounting for 63% of all publications. The most used by-products were cereals grain wastes (27.2%), fruit wastes (24.8%), and grass/leaves wastes (10.4%). Cellulases and xylanases were the main enzymes studied (31 and 25 articles, respectively) and Aspergillus niger was the most used microorganism (27 articles). Batch systems were the choice for all studies, with 62.2% being developed in solid-state fermentation (SSF).

Conclusions

Agri-food waste and biotechnology can contribute to innovations in enzyme production, benefiting various industrial sectors.

Highlights

• Brazil published most articles on enzyme production from agri-food wastes.

• Cereal grain wastes were the most used for microbial enzyme production.

• Despite its potential, food wastes are barely used as a substrate for enzyme production.

• The main enzymes produced from agri-food wastes are cellulases and xylanases.

A. niger is the most used microorganism to produce enzymes from wastes.

• Brazil, India, and China are leading countries in the valorization of agri-food wastes.

AbstractSection Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abd-Elhalem, B.T., El-Sawy, M., Gamal, R.F., Abou-Taleb, K.A.: Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci. 60(2), 193–202 (2015). https://doi.org/10.1016/j.aoas.2015.06.001

    Article  Google Scholar 

  2. Abdel Wahab, W.A., Esawy, M.A.: Statistical, physicochemical, and thermodynamic profiles of chitinase production from local agro-industrial wastes employing the honey isolate Aspergillus niger EM77. Heliyon 8(10), e10869 (2022). https://doi.org/10.1016/j.heliyon.2022.e10869

    Article  Google Scholar 

  3. Ahlawat, S., Dhiman, S.S., Battan, B., Mandhan, R.P., Sharma, J.: Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem. 44(5), 521–526 (2009). https://doi.org/10.1016/J.PROCBIO.2009.01.003

    Article  Google Scholar 

  4. Ahmed, I., Zia, M.A., Hussain, M.A., Akram, Z., Naveed, M.T., Nowrouzi, A.: Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J. Radiat. Res. Appl. Sci. 9(2), 148–154 (2016). https://doi.org/10.1016/j.jrras.2015.11.003

    Article  Google Scholar 

  5. Ahmed, S.A., Saleh, S.A.A., Mostafa, F.A., Abd El Aty, A.A., Ammar, H.A.M.: Characterization and valuable applications of xylanase from endophytic fungus Aspergillus terreus KP900973 isolated from Corchorus olitorius. Biocatal. Agric. Biotechnol. 7, 134–144 (2016). https://doi.org/10.1016/j.bcab.2016.05.015

    Article  Google Scholar 

  6. Aita, B.C., Spannemberg, S.S., Schmaltz, S., Zabot, G.L., Tres, M.V., Kuhn, R.C., Mazutti, M.A.: Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J. Environ. Chem. Eng. 7(3), 103193 (2019). https://doi.org/10.1016/j.jece.2019.103193

    Article  Google Scholar 

  7. Akpinar, M., Ozturk Urek, R.: Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 7(2), 1–10 (2017). https://doi.org/10.1007/s13205-017-0742-5

    Article  Google Scholar 

  8. Al Mousa, A.A., Hassane, A.M.A., Gomaa, A.E.R.F., Aljuriss, J.A., Dahmash, N.D., Abo-Dahab, N.F.: Response-surface statistical optimization of submerged fermentation for pectinase and cellulase production by Mucor circinelloides and M. hiemalis. Fermentation 8(5), 205 (2022). https://doi.org/10.3390/fermentation8050205

    Article  Google Scholar 

  9. Almowallad, S.A., Aljobair, M.O., Alkuraieef, A.N., Aljahani, A.H., Alsuhaibani, A.M., Alsayadi, M.M.: Utilization of agro-industrial orange peel and sugar beet pulp wastes for fungal endo- polygalacturonase production. Saudi J. Biol. Sci. 29(2), 963–969 (2022). https://doi.org/10.1016/j.sjbs.2021.10.005

    Article  Google Scholar 

  10. Alonso-Riaño, P., Diez, M.T.S., Blanco, B., Beltrán, S., Trigueros, E., Benito-Román, O.: Water ultrasound-assisted extraction of polyphenol compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 9(3), 265 (2020). https://doi.org/10.3390/antiox9030265

    Article  Google Scholar 

  11. Alves, T.P., Triques, C.C., da Silva, E.A., Fagundes-Klen, M.R., Hasan, S.D.M.: Multi-enzymatic recovery of fungal cellulases (Aspergillus niger) through solid-state fermentation of sugarcane bagasse. Can. J. Chem. Eng. 100(8), 1930–1940 (2022). https://doi.org/10.1002/cjce.24292

    Article  Google Scholar 

  12. Aparecida, S., Faria, C., Bassinello, P.Z.: Nutritional composition of rice bran submitted to different stabilization procedures. Braz. J. Pharm. Sci. 48(4), 652–657 (2012)

    Google Scholar 

  13. Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S., Kneifel, W.: Wheat bran-based biorefinery 2: Valorization of products. Lwt 56(2), 222–231 (2014). https://doi.org/10.1016/j.lwt.2013.12.003

    Article  Google Scholar 

  14. Asgher, M., Wahab, A., Bilal, M., Nasir Iqbal, H.M.: Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal. Agric. Biotechnol. 6, 195–201 (2016). https://doi.org/10.1016/j.bcab.2016.04.003

    Article  Google Scholar 

  15. Bagherzadeh, M., Inamura, M., Jeong, H.: Food waste along the food chain. OECD Food, Agric. Fish. Papers 71, 29 (2014). https://doi.org/10.1787/5jxrcmftzj36-en/5CnOECD

    Article  Google Scholar 

  16. Bajar, S., Singh, A., Bishnoi, N.R.: Exploration of low-cost agro-industrial waste substrate for cellulase and xylanase production using Aspergillus heteromorphus. Appl. Water Sci. 10(6), 1–9 (2020). https://doi.org/10.1007/s13201-020-01236-w

    Article  Google Scholar 

  17. Behera, B.C., Sethi, B.K., Mishra, R.R., Dutta, S.K., Thatoi, H.N.: Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: a review. J. Genet. Eng. Biotechnol. 15(1), 197–210 (2017). https://doi.org/10.1016/j.jgeb.2016.12.001

    Article  Google Scholar 

  18. Belc, N., Mustatea, G., Apostol, L., Iorga, S., Vlǎduţ, V.N., Mosoiu, C.: Cereal supply chain waste in the context of circular economy. E3S Web Conf. 112, 03031 (2019). https://doi.org/10.1051/e3sconf/201911203031

    Article  Google Scholar 

  19. Belorkar, S.A., Kausar, H.: Valorization parameters to determine the fermentative applicability of selected fruit peels for xylanase production. Waste Biomass Valor. 14(1), 185–196 (2023). https://doi.org/10.1007/s12649-022-01858-y

    Article  Google Scholar 

  20. Benevenuti, C., Branco, M., Do Nascimento-Correa, M., Botelho, A., Ferreira, T., Amaral, P.: Residual gas for ethanol production by clostridium carboxidivorans in a dual impeller stirred tank bioreactor (Stbr). Fermentation 7(3), 199 (2021). https://doi.org/10.3390/fermentation7030199

    Article  Google Scholar 

  21. Bezerra, C.O., Carneiro, L.L., Carvalho, E.A., das Chagas, T.P., de Carvalho, L.R., Uetanabaro, A.P.T., da Silva, G.P., da Silva, E.G.P., da Costa, A.M.: artificial intelligence as a combinatorial optimization strategy for cellulase production by trichoderma stromaticum AM7 using peach-palm waste under solid-state fermentation. Bioenerg. Res. 14(4), 1161–1170 (2021). https://doi.org/10.1007/s12155-020-10234-4

    Article  Google Scholar 

  22. Bhatt, B., Prajapati, V., Patel, K., Trivedi, U.: Kitchen waste for economical amylase production using Bacillus amyloliquefaciens KCP2. Biocatal. Agric. Biotechnol. 26(May), 101654 (2020). https://doi.org/10.1016/j.bcab.2020.101654

    Article  Google Scholar 

  23. Bhatt, S., Ye, H., Deutsch, J., Jeong, H., Zhang, J., Suri, R.: Food waste and upcycled foods: can a logo increase acceptance of upcycled foods? J. Food Prod. Market. 27(4), 188–203 (2021). https://doi.org/10.1080/10454446.2021.1955798

    Article  Google Scholar 

  24. Bhosale, S., Vijayalakshmi, D.: Processing and nutritional composition of rice bran. Curr. Res. Nutr. Food Sci. 3(1), 74–80 (2015). https://doi.org/10.12944/CRNFSJ.3.1.08

    Article  Google Scholar 

  25. Botella, C., Diaz, A., de Ory, I., Webb, C., Blandino, A.: Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42(1), 98–101 (2007). https://doi.org/10.1016/j.procbio.2006.06.025

    Article  Google Scholar 

  26. Canpulat, M., Pinar, O., Yilmaz-Sercinoglu, Z., Kazan, D.: Valorization of shrimp waste by obligate alkaliphilic Bacillus marmarensis. Biomass Convers. Biorefinery 0123456789 (2022). https://doi.org/10.1007/s13399-022-03684-7

  27. Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29(1), 3–23 (2005). https://doi.org/10.1016/j.femsre.2004.06.005

    Article  Google Scholar 

  28. Contato, A.G., Inácio, F.D., Bueno, P.S.A., Nolli, M.M., Janeiro, V., Peralta, R.M., de Souza, C.G.M.: Pleurotus pulmonarius: a protease-producing white rot fungus in lignocellulosic residues. Int. Microbiol. 26(1), 43–50 (2023). https://doi.org/10.1007/s10123-022-00271-8

    Article  Google Scholar 

  29. Contreras, E., Flores, R., Gutiérrez, A., Cerro, D., Sepúlveda, L.A.: Agro-industrial wastes revalorization as feedstock: production of lignin-modifying enzymes extracts by solid-state fermentation using white rot fungi. Prep. Biochem. Biotechnol. 53(5), 488–499 (2023). https://doi.org/10.1080/10826068.2022.2109048

    Article  Google Scholar 

  30. Coral-Velasco, D.A., Correa, L.F., Sánchez, Ó.J., Gómez, J.A.: Process design and techno-economic assessment of cellulolytic enzymes production from coffee husk through process simulation. Biomass Convers. Biorefinery 0123456789 (2022). https://doi.org/10.1007/s13399-022-03130-8

  31. Cruz-Davila, J., Perez, J.V., del Castillo, D.S., Diez, N.: Fusarium graminearum as a producer of xylanases with low cellulases when grown on wheat bran. Biotechnol. Rep. 35(March), e00738 (2022). https://doi.org/10.1016/j.btre.2022.e00738

    Article  Google Scholar 

  32. da Rosa-Garzon, N.G., Laure, H.J., Rosa, J.C., Cabral, H.: Valorization of agricultural residues using Myceliophthora thermophila as a platform for production of lignocellulolytic enzymes for cellulose saccharification. Biomass Bioenergy 161(March), 106452 (2022). https://doi.org/10.1016/j.biombioe.2022.106452

    Article  Google Scholar 

  33. da S. Pereira, A., Fontes-Sant’Ana, G.C., Amaral, P.F.F.: Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food Bioprod. Process. 115, 68–77 (2019). https://doi.org/10.1016/j.fbp.2019.02.002

    Article  Google Scholar 

  34. da Silva Nunes, N., Carneiro, L.L., de Menezes, L.H.S., de Carvalho, M.S., Pimentel, A.B., Silva, T.P., Pacheco, C.S.V., de Carvalho Tavares, I.M., Santos, P.H., das Chagas, T.P., da Silva, E.G.P., de Oliveira, J.R., Bilal, M., Franco, M.: Simplex-centroid design and artificial neural network-genetic algorithm for the optimization of exoglucanase production by Penicillium Roqueforti ATCC 10110 through solid-state fermentation using a blend of agroindustrial wastes. Bioenerg. Res. 13(4), 1130–1143 (2020). https://doi.org/10.1007/s12155-020-10157-0

    Article  Google Scholar 

  35. Dantroliya, S., Joshi, C., Mohapatra, A., Shah, D., Bhargava, P., Bhanushali, S., Pandit, R., Joshi, C., Joshi, M.: Creating wealth from waste: an approach for converting organic waste in to value-added products using microbial consortia. Environ. Technol. Innov. 25, 102092 (2022). https://doi.org/10.1016/j.eti.2021.102092

    Article  Google Scholar 

  36. de Campos, E.A.R., Pagani, R.N., Resende, L.M., Pontes, J.: Construction and qualitative assessment of a bibliographic portfolio using the methodology Methodi Ordinatio. Scientometrics 116(2), 815–842 (2018). https://doi.org/10.1007/S11192-018-2798-3/TABLES/6

    Article  Google Scholar 

  37. De Carvalho, G.D.G., Sokulski, C.C., Da Silva, W.V., De Carvalho, H.G., De Moura, R.V., De Francisco, A.C., Da Veiga, C.P.: Bibliometrics and systematic reviews: a comparison between the Proknow-C and the Methodi Ordinatio. J. Informetrics 14(3), 101043 (2020). https://doi.org/10.1016/j.joi.2020.101043

    Article  Google Scholar 

  38. de Carvalho, L.R., Santos, D.R., dos Santos Lima, C.S., Peralta, R.M., de Souza, C.G.M., Uetanabaro, A.P.T., da Silva, E.G.P., da Costa, A.M.: Stable polyphenol oxidase produced by pleurotus pulmonarius from fermented peach-palm and cocoa wastes. Bioenerg. Res. 0123456789 (2023). https://doi.org/10.1007/s12155-023-10628-0

  39. de Carvalho, M.S., de Menezes, L.H.S., Pimentel, A.B., Costa, F.S., Oliveira, P.C., dos Santos, M.M.O., de Carvalho Tavares, I.M., Irfan, M., Bilal, M., Dias, J.C.T., de Oliveira, J.R., Franco, M.: Application of chemometric methods for the optimization secretion of xylanase by Aspergillus oryzae in solid state fermentation and its application in the saccharification of agro-industrial waste. Waste Biomass Valor. 0123456789 (2020). https://doi.org/10.1007/s12649-022-01832-8

  40. de Oliveira, F., Castellane, T.C.L., de Melo, M.R., Buzato, J.B.: Preparation of Aspergillus niger 426 naringinases for debittering citrus juice utilization of agro-industrial residues. Int. Microbiol. 25(1), 123–131 (2022). https://doi.org/10.1007/s10123-021-00199-5

    Article  Google Scholar 

  41. de Oliveira Rodrigues, P., Gurgel, L.V.A., Pasquini, D., Badotti, F., Góes-Neto, A., Baffi, M.A.: Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renew. Energy 145, 2683–2693 (2020). https://doi.org/10.1016/j.renene.2019.08.041

    Article  Google Scholar 

  42. Dedousi, M., Melanouri, E.M., Diamantopoulou, P.: Carposome productivity of Pleurotus ostreatus and Pleurotus eryngii growing on agro-industrial residues enriched with nitrogen, calcium salts and oils. Carbon Resour. Convers. 6(2), 150–165 (2023). https://doi.org/10.1016/j.crcon.2023.02.001

    Article  Google Scholar 

  43. da S. Delabona, P., Pirota, R.D.P.B., Codima, C.A., Tremacoldi, C.R., Rodrigues, A., Farinas, C.S.: Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Ind. Crops .ucts 42(1), 236–242 (2013). https://doi.org/10.1016/j.indcrop.2012.05.035

    Article  Google Scholar 

  44. Devi, S., Dwivedi, D., Bhatt, A.K.: Utilization of agroresidues for the production of xylanase by Bacillus safensis XPS7 and optimization of production parameters. Fermentation 8(5), 221 (2022). https://doi.org/10.3390/fermentation8050221

    Article  Google Scholar 

  45. Dinil, A., Jacob, A.: Valorization of agro-industrial discards in fermentation for the production of cellulase enzyme. J. Pure Appl. Microbiol. 16(1), 347–354 (2022). https://doi.org/10.22207/JPAM.16.1.25

    Article  Google Scholar 

  46. Doan, C.T., Tran, T.N., Nguyen, V.B., Vo, T.P.K., Nguyen, A.D., Wang, S.L.: Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 131, 706–715 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.117

    Article  Google Scholar 

  47. Ekpenyong, M., Asitok, A., Ben, U., Amenaghawon, A., Kusuma, H., Akpan, A., Antai, S.: Application of the novel manta-ray foraging algorithm to optimize acidic peptidase production in solid-state fermentation using binary agro-industrial waste. Prep. Biochem. Biotechnol. 0(0), 1–13 (2023). https://doi.org/10.1080/10826068.2023.2214936

    Article  Google Scholar 

  48. Elzairy, N., Mostafa, F., Wahab, W.A.A., Abdel-Naby, M., Ragab, Y., Hashem, A.: Remarkable improvement of levansucrase production from a newly isolated Aspergillus niger MK788296 strain using agro-industrial wastes through statistical optimization techniques. Egypt. Pharm. J. 22(1), 38 (2023). https://doi.org/10.4103/epj.epj_92_22

    Article  Google Scholar 

  49. Escaramboni, B., Garnica, B.C., Abe, M.M., Palmieri, D.A., Fernández Núñez, E.G., de Oliva Neto, P.: Food waste as a feedstock for fungal biosynthesis of amylases and proteases. Waste Biomass Valoriz. 13(1), 213–226 (2022). https://doi.org/10.1007/s12649-021-01511-0

    Article  Google Scholar 

  50. Fărcaș, A.C., Socaci, S.A., Nemeș, S.A., Salanță, L.C., Chiș, M.S., Pop, C.R., Borșa, A., Diaconeasa, Z., Vodnar, D.C.: Cereal waste valorization through conventional and current extraction techniques—an up-to-date overview. Foods 11(16), 1–34 (2022). https://doi.org/10.3390/foods11162454

    Article  Google Scholar 

  51. Favaro, C.P., Baraldi, I.J., Casciatori, F.P., Farinas, C.S.: β-Mannanase production using coffee industry waste for application in soluble coffee processing. Biomolecules. 10(2), 227 (2020). https://doi.org/10.3390/biom10020227

  52. Ferreira, A.N., Da Silva, A.T., Nascimento, J.S. do, Souza, C.B. de, Silva, M. da C., Grillo, L.A.M., Luz, J.M.R. da, Pereira, H.J.V.: Production, characterization, and application of a new chymotrypsin-like protease from Pycnoporus sanguineus. Biocatal. Biotransform. 0(0), 1–10 (2023)https://doi.org/10.1080/10242422.2023.2196362

  53. Fraga, J.L., Souza, C.P.L., Pereira, A. da S., Aguieiras, E.C.G., de Silva, L.O., Torres, A.G., Freire, D.G., Amaral, P.F.F.: Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech 11(4), 1–9 (2021)https://doi.org/10.1007/s13205-021-02748-1

  54. Friedman, M.: Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agric. Food Chem. 61(45), 10626–10641 (2013). https://doi.org/10.1021/jf403635v

    Article  Google Scholar 

  55. Germec, M., Turhan, I.: Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Convers. Biorefinery 13(6), 4727–4739 (2023). https://doi.org/10.1007/s13399-021-01436-7

    Article  Google Scholar 

  56. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B.: Microbial α-amylases: a biotechnological perspective. Process Biochem. 38(11), 1599–1616 (2003). https://doi.org/10.1016/S0032-9592(03)00053-0

    Article  Google Scholar 

  57. Hölker, U., Höfer, M., Lenz, J.: Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64(2), 175–186 (2004). https://doi.org/10.1007/s00253-003-1504-3

    Article  Google Scholar 

  58. Hölker, U., Lenz, J.: Solid-state fermentation - Are there any biotechnological advantages? Curr. Opin. Microbiol. 8(3), 301–306 (2005). https://doi.org/10.1016/j.mib.2005.04.006

    Article  Google Scholar 

  59. Joo, G.J.: Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotech. Lett. 27(19), 1483–1486 (2005). https://doi.org/10.1007/s10529-005-1315-y

    Article  Google Scholar 

  60. Kamani, M.H., Neji, C., Fitzsimons, S.M., Fenelon, M.A., Murphy, E.G.: Unlocking the nutritional and functional potential of legume waste to produce protein ingredients. Crit. Rev. Food Sci. Nutr. 0(0), 1–19 (2023). https://doi.org/10.1080/10408398.2023.2184322

    Article  Google Scholar 

  61. Karuppiah, V., Zhixiang, L., Liu, H., Murugappan, V., Kumaran, S., Perianaika Anahas, A.M., Chen, J.: Co-cultivation of T. asperellum GDFS1009 and B. amyloliquefaciens 1841: Strategy to regulate the production of ligno-cellulolytic enzymes for the lignocellulose biomass degradation. J. Environ. Manag. 301(January 2021), 113833 (2022). https://doi.org/10.1016/j.jenvman.2021.113833

    Article  Google Scholar 

  62. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Biores. Technol. 77(3), 215–227 (2001). https://doi.org/10.1016/S0960-8524(00)00118-8

    Article  Google Scholar 

  63. Khanahmadi, M., Arezi, I., Amiri, M.S., Miranzadeh, M.: Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatal. Agric. Biotechnol. 13(January), 272–282 (2018). https://doi.org/10.1016/j.bcab.2018.01.005

    Article  Google Scholar 

  64. Kibler, K.M., Reinhart, D., Hawkins, C., Motlagh, A.M., Wright, J.: Food waste and the food-energy-water nexus: a review of food waste management alternatives. Waste Manag. 74, 52–62 (2018). https://doi.org/10.1016/j.wasman.2018.01.014

    Article  Google Scholar 

  65. Kumar, A., Singh, A.K., Bilal, M., Chandra, R.: Sustainable production of thermostable laccase from agro-residues waste by Bacillus aquimaris AKRC02. Catal. Lett. 152(6), 1784–1800 (2022). https://doi.org/10.1007/s10562-021-03753-y

    Article  Google Scholar 

  66. Kumar, V., Chhabra, D., Shukla, P.: Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. Biores. Technol. 243(May), 1009–1019 (2017). https://doi.org/10.1016/j.biortech.2017.07.094

    Article  Google Scholar 

  67. Laothanachareon, T., Bunterngsook, B., Champreda, V.: Profiling multi-enzyme activities of Aspergillus niger strains growing on various agro-industrial residues. 3 Biotech 12(1), 1–16 (2022). https://doi.org/10.1007/s13205-021-03086-y

    Article  Google Scholar 

  68. Leite, P., Silva, C., Salgado, J.M., Belo, I.: Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crops Prod. 137(November 2018), 315–322 (2019). https://doi.org/10.1016/j.indcrop.2019.04.044

    Article  Google Scholar 

  69. Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S., Liu, S.: Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 44(March), 107630 (2020). https://doi.org/10.1016/j.biotechadv.2020.107630

    Article  Google Scholar 

  70. Li, P.-j, Xia, J.-l, Shan, Y., Nie, Z.-y: Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst. Eng. 38(10), 2013–2022 (2015). https://doi.org/10.1007/s00449-015-1442-3

    Article  Google Scholar 

  71. Li, S.Y., Srivastava, R., Suib, S.L., Li, Y., Parnas, R.S.: Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Biores. Technol. 102(5), 4241–4250 (2011). https://doi.org/10.1016/j.biortech.2010.12.078

    Article  Google Scholar 

  72. Lima, M.A.S., De Oliveira, M.D.C.F., Pimenta, A.T.Á., Uchôa, P.K.S.: Aspergillus Niger: a hundred years of contribution to the natural products chemistry. J. Braz. Chem. Soc. 30(10), 2029–2059 (2019). https://doi.org/10.21577/0103-5053.2019008

    Article  Google Scholar 

  73. Lucarini, M., Durazzo, A., Bernini, R., Campo, M., Vita, C., Souto, E.B., Lombardi-Boccia, G., Ramadan, M.F., Santini, A., Romani, A.: Fruit wastes as a valuable source of value-added compounds: a collaborative perspective. Molecules 26(21), 1–27 (2021). https://doi.org/10.3390/molecules26216338

    Article  Google Scholar 

  74. Mahanta, N., Gupta, A., Khare, S.K.: Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Biores. Technol. 99(6), 1729–1735 (2008). https://doi.org/10.1016/j.biortech.2007.03.046

    Article  Google Scholar 

  75. Majumder, R., Banik, S.P., Ramrakhiani, L., Khowala, S.: Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: optimization approach based on statistical design and characterization for diverse applications. J. Chem. Technol. Biotechnol. 90, 1886–1896 (2015). https://doi.org/10.1002/jctb.4500

    Article  Google Scholar 

  76. Mamma, D., Kourtoglou, E., Christakopoulos, P.: Fungal multienzyme production on industrial by-products of the citrus-processing industry. Biores. Technol. 99(7), 2373–2383 (2008). https://doi.org/10.1016/j.biortech.2007.05.018

    Article  Google Scholar 

  77. Mansour, A.A., Arnaud, T., Lu-Chau, T.A., Fdz-Polanco, M., Moreira, M.T., Rivero, J.A.C.: Review of solid state fermentation for lignocellulolytic enzyme production: challenges for environmental applications. Rev. Environ. Sci. Biotechnol. 15(1), 31–46 (2016). https://doi.org/10.1007/s11157-016-9389-7

    Article  Google Scholar 

  78. Marín, M., Sánchez, A., Artola, A.: Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J. Clean. Prod. 209, 937–946 (2019). https://doi.org/10.1016/j.jclepro.2018.10.264

    Article  Google Scholar 

  79. Martínez, A.T., Ruiz-Dueñas, F.J., Camarero, S., Serrano, A., Linde, D., Lund, H., Vind, J., Tovborg, M., Herold-Majumdar, O.M., Hofrichter, M., Liers, C., Ullrich, R., Scheibner, K., Sannia, G., Piscitelli, A., Pezzella, C., Sener, M.E., Kılıç, S., van Berkel, W.J.H., … Alcalde, M.: Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 35(6), 815–831 (2017). https://doi.org/10.1016/j.biotechadv.2017.06.003

  80. Martínez Rivas, C.J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Román, R.Á., Fessi, H., Elaissari, A.: Nanoprecipitation process: from encapsulation to drug delivery. Int. J. Pharm. 532(1), 66–81 (2017). https://doi.org/10.1016/j.ijpharm.2017.08.064

    Article  Google Scholar 

  81. Marzo, C., Díaz, A.B., Caro, I., Blandino, A.: Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Manage. Res. 37(2), 149–156 (2019). https://doi.org/10.1177/0734242X18798699

    Article  Google Scholar 

  82. Mazhar, H., Ullah, I., Ali, U., Abbas, N., Hussain, Z., Ali, S.S., Zhu, H.: Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. Biocatal. Agric. Biotechnol. 47(November 2022), 102559 (2023). https://doi.org/10.1016/j.bcab.2022.102559

    Article  Google Scholar 

  83. Mehmood, T., Saman, T., Irfan, M., Anwar, F., Ikram, M.S., Tabassam, Q.: Pectinase production from schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation. Waste Biomass Valor. 10(9), 2527–2536 (2019). https://doi.org/10.1007/s12649-018-0279-9

    Article  Google Scholar 

  84. Melnichuk, N., Braia, M.J., Anselmi, P.A., Meini, M.R., Romanini, D.: Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manag. 106, 155–161 (2020). https://doi.org/10.1016/j.wasman.2020.03.025

    Article  Google Scholar 

  85. Mendoza Martinez, C.L., Alves Rocha, E.P., de C. Oliveira Carneiro, A., Borges Gomes, F.J., Ribas Batalha, L.A., Vakkilainen, E., Cardoso, M.: Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 120(October 2018), 68–76 (2019). https://doi.org/10.1016/j.biombioe.2018.11.003

    Article  Google Scholar 

  86. Montoya, S., Patiño, A., Sánchez, Ó.J.: Production of lignocellulolytic enzymes and biomass of trametes versicolor from agro-industrial residues in a novel fixed-bed bioreactor with natural convection and forced aeration at pilot scale. Processes 9(2), 1–19 (2021). https://doi.org/10.3390/pr9020397

    Article  Google Scholar 

  87. Motte, J.C., Trably, E., Escudié, R., Hamelin, J., Steyer, J.P., Bernet, N., Delgenes, J.P., Dumas, C.: Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 6(1), 1–9 (2013). https://doi.org/10.1186/1754-6834-6-164/FIGURES/3

    Article  Google Scholar 

  88. Mukherjee, A.K., Adhikari, H., Rai, S.K.: Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem. Eng. J. 39(2), 353–361 (2008). https://doi.org/10.1016/j.bej.2007.09.017

    Article  Google Scholar 

  89. Murakami, S., Nagasaki, K., Nishimoto, H., Shigematu, R., Umesaki, J., Takenaka, S., Kaulpiboon, J., Prousoontorn, M., Limpaseni, T., Pongsawasdi, P., Aoki, K.: Purification and characterization of five alkaline, thermotolerant, and maltotetraose-producing α-amylases from Bacillus halodurans MS-2-5, and production of recombinant enzymes in Escherichia coli. Enzyme Microb. Technol. 43(4–5), 321–328 (2008). https://doi.org/10.1016/J.ENZMICTEC.2008.05.006

    Article  Google Scholar 

  90. Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., Amjad, F.: Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal. Lett. 151(2), 307–323 (2021). https://doi.org/10.1007/S10562-020-03316-7/TABLES/3

    Article  Google Scholar 

  91. Ncobela, C.N., Kanengoni, A.T., Hlatini, V.A., Thomas, R.S., Chimonyo, M.: A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 227(February), 107–117 (2017). https://doi.org/10.1016/j.anifeedsci.2017.02.008

    Article  Google Scholar 

  92. Niyomukiza, S., Owino, W., Maina, J.M., Maina, N., Issifu, M.: Concomitant production of α-amylase and protease by bacillus Aerius strain FPWSHA isolated from food wastes. Biointerface Res. Appl. Chem. 13(4), 1–15 (2023). https://doi.org/10.33263/BRIAC134.310

    Article  Google Scholar 

  93. Nogueira, L.S., de C. Tavares, I.M., Santana, N.B., Ferrão, S.P.B., Teixeira, J.M., Costa, F.S., Silva, T.P., Pereira, H.J.V., Irfan, M., Bilal, M., de Oliveira, J.R., Franco, M.: Thermostable trypsin-like protease by Penicillium roqueforti secreted in cocoa shell fermentation: production optimization, characterization, and application in milk clotting. Biotechnol. Appl. Biochem. 69(5), 2069–2080 (2022). https://doi.org/10.1002/bab.2268

    Article  Google Scholar 

  94. Nunes, P.M.B., Fraga, J.L., Ratier, R.B., Rocha-Leão, M.H.M., Brígida, A.I.S., Fickers, P., Amaral, P.F.F.: Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst. Eng. 44(4), 809–818 (2021). https://doi.org/10.1007/S00449-020-02489-0

    Article  Google Scholar 

  95. Núñez Pérez, J., Chávez Arias, B.S., de la Vega Quintero, J.C., Zárate Baca, S., Pais-Chanfrau, J.M.: Multi-objective statistical optimization of Pectinolytic enzymes production by an aspergillus sp. on dehydrated coffee residues in solid-state fermentation. Fermentation 8(4), 170 (2022). https://doi.org/10.3390/fermentation8040170

    Article  Google Scholar 

  96. OECD/FAO.: OECD-FAO agricultural outlook 2021–2030. (2021). https://doi.org/10.1787/19428846-EN

  97. Oliveira, R.C., Maciel, V.M.M., Hissa, D.C., França, Í.W., Gonçalves, L.R.B.: Production of the food enzyme Acetolactate decarboxylase (ALDC) from Bacillus subtilis ICA 56 using agro-industrial residues as feedstock. Fermentation 8(12), 675 (2022). https://doi.org/10.3390/fermentation8120675

    Article  Google Scholar 

  98. Oshoma, C.E., Akor, J.O., Ikhajiagbe, B., Ikenebomeh, M.J.: Mutation of Aspergillus sp. using ultraviolet light and nitrous acid for amylase production from banana peels. Makara J. Sci. 26(3), 209–216 (2022). https://doi.org/10.7454/mss.v26i3.1357

    Article  Google Scholar 

  99. Oskay, M.: Production, partial purification, and characterization of polygalacturonase from aureobasidium pullulans P56 under submerged fermentation using agro-industrial wastes. Curr. Microbiol. 79(10), 1–10 (2022). https://doi.org/10.1007/s00284-022-02991-6

    Article  Google Scholar 

  100. Ousaadi, M.I., Merouane, F., Berkani, M., Almomani, F., Vasseghian, Y., Kitouni, M.: Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp. Environ. Res. 201(June), 111494 (2021). https://doi.org/10.1016/j.envres.2021.111494

    Article  Google Scholar 

  101. Pagani, R.N., Kovaleski, J.L., Resende, L.M.: Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 105(3), 2109–2135 (2015). https://doi.org/10.1007/s11192-015-1744-x

    Article  Google Scholar 

  102. Palmonari, A., Cavallini, D., Sniffen, C.J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., Mammi, L.: Short communication: Characterization of molasses chemical composition. J. Dairy Sci. 103(7), 6244–6249 (2020). https://doi.org/10.3168/jds.2019-17644

    Article  Google Scholar 

  103. Pang, H., Jiao, Q., He, J., Zhang, Z., Wang, L., Yan, Z., et al.: Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge: synergistic pretreatment of alkali and alkaline hydrolase blend. J. Clean. Prod. 342, 130954 (2022). https://doi.org/10.1016/j.jclepro.2022.130954

    Article  Google Scholar 

  104. Patil, N.S., Jadhav, J.P.: Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int. Biodeterior. Biodegradation 91, 9–17 (2014). https://doi.org/10.1016/j.ibiod.2014.03.003

    Article  Google Scholar 

  105. Peña-Lucio, E.M., Londoño-Hernández, L., Ascacio-Valdes, J.A., Chavéz-González, M.L., Bankole, O.E., Aguilar, C.N.: Use of coffee pulp and sorghum mixtures in the production of n-demethylases by solid-state fermentation. Biores. Technol. 305(February), 123112 (2020). https://doi.org/10.1016/j.biortech.2020.123112

    Article  Google Scholar 

  106. Pérez-Camacho, M.N., Curry, R., Cromie, T.: Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks. Waste Manag. 73, 140–155 (2018). https://doi.org/10.1016/j.wasman.2017.12.023

    Article  Google Scholar 

  107. Pfaltzgraff, L.A., De Bruyn, M., Cooper, E.C., Budarin, V., Clark, J.H.: Food waste biomass: a resource for high-value chemicals. Green Chem. 15(2), 307–314 (2013). https://doi.org/10.1039/c2gc36978h

    Article  Google Scholar 

  108. Pham, V.H.T., Kim, J., Shim, J., Chang, S., Chung, W.: Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing bacillus amyloliquefaciens FW2 without pretreatments. Microorganisms. 10(2), 327 (2022). https://doi.org/10.3390/microorganisms10020327

    Article  Google Scholar 

  109. Prakasham, R.S., Rao, C.S., Sarma, P.N.: Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97(13), 1449–1454 (2006). https://doi.org/10.1016/j.biortech.2005.07.015

    Article  Google Scholar 

  110. Putri, D.N., Khootama, A., Perdani, M.S., Utami, T.S., Hermansyah, H.: Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Rep. 6, 331–335 (2020). https://doi.org/10.1016/j.egyr.2019.08.064

    Article  Google Scholar 

  111. Rakita, S., Kokić, B., Manoni, M., Mazzoleni, S., Lin, P., Luciano, A., Ottoboni, M., Cheli, F., Pinotti, L.: Cold-pressed oilseed cakes as alternative and sustainable feed ingredients: a review. Foods 12(3), 432 (2023). https://doi.org/10.3390/foods12030432

    Article  Google Scholar 

  112. Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., Pandey, A.: Coconut oil cake - a potential raw material for the production of α-amylase. Biores. Technol. 93(2), 169–174 (2004). https://doi.org/10.1016/j.biortech.2003.10.021

    Article  Google Scholar 

  113. Ravindran, R., Jaiswal, A.K.: Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3(4), 30 (2016). https://doi.org/10.3390/bioengineering3040030

    Article  Google Scholar 

  114. Reddy, N., Deekonda, V., Seshagiri, S., Reddy, R., Gangula, A.K.: Production, characterization and applications of proteases produced by Bacillus licheniformis, Acinetobacter pittii and Aspergillus niger using neem seed oil cake as the substrate. Ind. Crops Prod. 187(PB), 115403 (2022). https://doi.org/10.1016/j.indcrop.2022.115403

    Article  Google Scholar 

  115. de M. Rocha, G.J., Nascimento, V.M., Gonçalves, A.R., Silva, V.F.N., Martín, C.: Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind. Crops Prod. 64, 52–58 (2015). https://doi.org/10.1016/j.indcrop.2014.11.003

    Article  Google Scholar 

  116. Rodrigues, H.C.S.R., Carvalho, A.L., Santos, L.M., da Silva, A.B., Umsza-Guez, M.A.: Actinobacteria hydrolase producer in solid-state fermentation using licuri. Ciencia Agrotecnol. 46, (2022). https://doi.org/10.1590/1413-7054202246020721

  117. Rubio, M.J., Beach, M., Contreras, R., Rubio, F.A., Fernando Ramirez, J., Assignee, G.N., Gonzalez Barrera, R., Alvarez, M.M.: Continuous enzymatic precooking for the production of an instant corn flour for snack and tortilla. In: Abstract in Keystone Symposia of Environmental Biotechnology (2003). www.nal.usda.gov/fnic/. Accessed 17 Nov 2023

  118. Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G.: Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 17(3), 512–531 (2018). https://doi.org/10.1111/1541-4337.12330

    Article  Google Scholar 

  119. Saharan, V., Tushir, S., Singh, J., Kumar, N., Chhabra, D., Kapoor, R.K.: Application of MOGA-ANN tool for the production of cellulase and xylanase using de-oiled rice bran (DORB) for bioethanol production. Biomass Convers. Biorefinery 0123456789 (2023). https://doi.org/10.1007/s13399-023-04022-1

  120. Saldaña-Mendoza, S.A., Palacios-Ponce, A.S., Ruiz, H.A., Ascacio-Valdés, J.A., Aguilar, C.N.: Revalorization of green tea waste through the production of cellulases by solid-state fermentation using a Aspergillus niger 28A. Biomass Convers. Biorefinery 0123456789 (2023). https://doi.org/10.1007/s13399-023-03919-1

  121. Saleem Khan, T., Mubeen, U.: Wheat straw: a pragmatic overview. Curr. Res. J. Biol. Sci. 4(6), 673–675 (2012)

    Google Scholar 

  122. Saleh, S.A.A., Abdel Wahab, W.A., El-Dein, A.N., Abdelwahab, W.A., Ahmed, A.A.M., Helmy, W.A., Mostafa, F.A.: Characterization of Aspergillus niger MK981235 xylanase with extraction of anti-hepatotoxic, antioxidant, hypocholesterolemic and prebiotic Corchorus olitorius stems xylooligosaccharides. Int. J. Biol. Macromol. 166, 677–686 (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.225

    Article  Google Scholar 

  123. Salgado-Bautista, D., Volke-Sepúlveda, T., Figueroa-Martínez, F., Carrasco-Navarro, U., Chagolla-López, A., Favela-Torres, E.: Solid-state fermentation increases secretome complexity in Aspergillus brasiliensis. Fungal Biol. 124(8), 723–734 (2020). https://doi.org/10.1016/j.funbio.2020.04.006

    Article  Google Scholar 

  124. Salim, A.A., Grbavčić, S., Šekuljica, N., Stefanović, A., Jakovetić Tanasković, S., Luković, N., Knežević-Jugović, Z.: Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: the evaluation of substrate pretreatment methods. Biores. Technol. 228, 193–200 (2017). https://doi.org/10.1016/j.biortech.2016.12.081

    Article  Google Scholar 

  125. Salomão, G.S.B., Agnezi, J.C., Paulino, L.B., Hencker, L.B., de Lira, T.S., Tardioli, P.W., Pinotti, L.M.: Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatal. Agric. Biotechnol. 17(November 2018), 1–6 (2019). https://doi.org/10.1016/j.bcab.2018.10.019

    Article  Google Scholar 

  126. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A.: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40(8), 2689–2694 (2005). https://doi.org/10.1016/j.procbio.2004.12.001

    Article  Google Scholar 

  127. Saranraj, P., Naidu M.A.: Microbial pectinases: a review. Global. J. Trad. Med. Syst. 3(1), 1–9 (2014)

  128. Schanes, K., Dobernig, K., Gözet, B.: Food waste matters - a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018). https://doi.org/10.1016/j.jclepro.2018.02.030

    Article  Google Scholar 

  129. Schieber, A.: Side Streams of plant food processing as a source of valuable compounds: selected examples. Annu. Rev. Food Sci. Technol. 8, 97–112 (2017). https://doi.org/10.1146/annurev-food-030216-030135

    Article  Google Scholar 

  130. Shankar, R., Upadhyay, P.K., Kumar, M.: Protease enzymes: highlights on potential of proteases as therapeutics agents. Int. J. Pept. Res. Ther. 27(2), 1281–1296 (2021). https://doi.org/10.1007/S10989-021-10167-2/FIGURES/2

    Article  Google Scholar 

  131. Sharma, A., Tewari, R., Rana, S.S., Soni, R., Soni, S.K.: Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 179(8), 1346–1380 (2016). https://doi.org/10.1007/s12010-016-2070-3

    Article  Google Scholar 

  132. Sharma, D., Mishra, A.: L-asparaginase production in solid-state fermentation using Aspergillus niger: process modeling by artificial neural network approach. Prep. Biochem. Biotechnol. 52(5), 549–560 (2022). https://doi.org/10.1080/10826068.2021.1972426

    Article  Google Scholar 

  133. Shet, A.R., Muhsinah, A.B., Alhazmi, A.Y., Achappa, S., Desai, S.V., Mahnashi, M.H., Muddapur, U.M., Khan, A.A., Shaikh, I.A.: Bioprocessing of agro-industrial waste for maximization of pectinase production by a novel native strain aspergillus cervinus ARS2 using statistical approach. Separations 9(12), 1–18 (2022). https://doi.org/10.3390/separations9120438

    Article  Google Scholar 

  134. Shet, A.R., Muhsinah, A. Bin., Alsayari, A., Achappa, S., Desai, S.V., Mahnashi, M.H., Muddapur, U.M., Shaikh, I.A., Mannasaheb, B.A., Khan, A.A.: Media optimization by response surface methodology for the enhanced production of acidic extracellular pectinase by the indigenously isolated novel strain aspergillus cervinus ARS2 using solid-state fermentation. Fermentation 8(10), 485 (2022). https://doi.org/10.3390/fermentation8100485

    Article  Google Scholar 

  135. Singh, K., Kayastha, A.M.: α-Amylase from wheat (Triticum aestivum) seeds: Its purification, biochemical attributes and active site studies. Food Chem. 162, 1–9 (2014). https://doi.org/10.1016/J.FOODCHEM.2014.04.043

    Article  Google Scholar 

  136. Singh, R., Langyan, S., Sangwan, S., Gaur, P., Khan, F.N., Yadava, P., Rohatgi, B., Shrivastava, M., Khandelwal, A., Darjee, S., Sahu, P.K.: Optimization and production of alpha-amylase using Bacillus subtilis from apple peel: comparison with alternate feedstock. Food Biosci. 49(June), 101978 (2022). https://doi.org/10.1016/j.fbio.2022.101978

    Article  Google Scholar 

  137. Singh, S., Bajaj, B.K.: Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol. Environ. 2(6), 370–386 (2017). https://doi.org/10.1007/S40974-017-0076-5

    Article  Google Scholar 

  138. Skendi, A., Zinoviadou, K.G., Papageorgiou, M., Rocha, J.M.: Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Foods 9(9), 1243 (2020). https://doi.org/10.3390/foods9091243

  139. Soares, G.A., Alnoch, R.C., Silva Dias, G., dos Santos Reis, N., de C. Tavares, I.M., Ruiz, H.A., Bilal, M., de Oliveira, J.R., Krieger, N., Franco, M.: Production of a fermented solid containing lipases from Penicillium roqueforti ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnol. Appl. Biochem. 69(3), 1284–1299 (2022). https://doi.org/10.1002/bab.2202

    Article  Google Scholar 

  140. Song, P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R., Wei, F.: Microbial proteases and their applications. Front. Microbiol. 14, 1236368 (2023). https://doi.org/10.3389/fmicb.2023.1236368

    Article  Google Scholar 

  141. Srivastava, N., Singh, R., Mohammad, A., Pal, D.B., Ahmad, I., Alam, M.M., Mishra, P.K., Gupta, V.K.: Acid tolerant multicomponent bacterial enzymes production enhancement under the influence of corn cob waste substrate. Int. J. Food Microbiol. 373(March), 109698 (2022). https://doi.org/10.1016/j.ijfoodmicro.2022.109698

    Article  Google Scholar 

  142. Szymczak, T., Cybulska, J., Podleśny, M., Frąc, M.: Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture (Switzerland) 11(6), 540 (2021). https://doi.org/10.3390/agriculture11060540

    Article  Google Scholar 

  143. Tarafdar, A., Sirohi, R., Gaur, V.K., Kumar, S., Sharma, P., Varjani, S., Pandey, H.O., Sindhu, R., Madhavan, A., Rajasekharan, R., Sim, S.J.: Engineering interventions in enzyme production: Lab to industrial scale. Bioresource Technol. 326(October 2020), 124771 (2021). https://doi.org/10.1016/j.biortech.2021.124771

    Article  Google Scholar 

  144. Teixeira, W.F.A., Batista, R.D., do Amaral Santos, C.C.A., Júnior, A.C.F., Terrasan, C.R.F., de Santana, M.W.P.R., de Siqueira, F.G., de Paula-Elias, F.C., de Almeida, A.F.: Minimal enzymes cocktail development by filamentous fungi consortia in solid-state cultivation and valorization of pineapple crown waste by enzymatic Saccharification. Waste Biomass Valor. 12(5), 2521–2539 (2021)https://doi.org/10.1007/s12649-020-01199-8

  145. Thadathil, N., Kuttappan, A.K.P., Vallabaipatel, E., Kandasamy, M., Velappan, S.P.: Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann. Microbiol. 64(2), 671–681 (2014). https://doi.org/10.1007/s13213-013-0702-1

    Article  Google Scholar 

  146. Tavano, O.L., Berenguer-Murcia, A., Secundo, F., Fernandez-Lafuente, R.: Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf. 17(2), 412–436 (2018Mar). https://doi.org/10.1111/1541-4337.12326

    Article  Google Scholar 

  147. UnitedNations.: Transforming our world: the 2030 Agenda for sustainable development | department of economic and social affairs. (2015). https://sdgs.un.org/2030agenda. Accessed 20 Nov 2023

  148. Whitaker, J.R.: Principles of enzymology for the food sciences. Princ. Enzymol. Food Sci. (2018). https://doi.org/10.1201/9780203742136

    Article  Google Scholar 

  149. Xiao, Y., Zan, F., Zhang, W., Hao, T.: Alleviating nutrient imbalance of low carbon-to-nitrogen ratio food waste in anaerobic digestion by controlling the inoculum-to-substrate ratio. Bioresour. Technol. 346(October 2021), 126342 (2022). https://doi.org/10.1016/j.biortech.2021.126342

    Article  Google Scholar 

  150. Xie, H., Wu, B., Liu, G., Li, X.: Optimization of in situ cellulase production from Penicillium oxalicum P-07 under submerged fermentation conditions with different cellulose types. J. Environ. Chem. Eng. 11(3), 110290 (2023). https://doi.org/10.1016/j.jece.2023.110290

    Article  Google Scholar 

  151. Xu, L., Sun, K., Wang, F., Zhao, L., Hu, J., Ma, H., Ding, Z.: Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. J. Environ. Manage. 270(May), 110904 (2020). https://doi.org/10.1016/j.jenvman.2020.110904

    Article  Google Scholar 

  152. Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Pan, D., Wang, Y., Zha, G., Jiao, L.: Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Sci. Rep. 8(1), 1–10 (2018). https://doi.org/10.1038/s41598-018-19238-9

    Article  Google Scholar 

  153. Yasin, N.H.M., Mumtaz, T., Hassan, M.A., Abd Rahman, N.: Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manag. 130(June 2011), 375–385 (2013). https://doi.org/10.1016/j.jenvman.2013.09.009

    Article  Google Scholar 

  154. Zeng, X., Cai, Y., Liao, X., Zeng, X., Li, W., Zhang, D.: Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J. Hazard. Mater. 187(1–3), 517–525 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.068

    Article  Google Scholar 

  155. Zhou, K., Slavin, M., Lutterodt, H., Whent, M., Eskin, N.A.M., Yu, L.: Cereals and Legumes. In Biochemistry of Foods (Third Edit). Elsevier, (2012).https://doi.org/10.1016/B978-0-08-091809-9.00001-7

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, Coordination for the Improvement of Higher Education Personnel, and National Council for Scientific and Technological Development.

Funding

This work was funded (Brazil) by Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (Grant numbers: E-26/201.915/2020 Bolsa and E-26/201.419/2022), Coordination for the Improvement of Higher Education Personnel, and National Council for Scientific and Technological Development (CNPq—Bolsa PQ: 304694/2022–3).

Author information

Authors and Affiliations

Authors

Contributions

Adejanildo da S. Pereira: Conceptualization, Writing-original draft, Review, Editing, Preparation of figures and tables, Supervision, Visualization. Camila P. L. Souza: Conceptualization, Methodology, Writing-original draft, Writing-review, Editing, Visualization. Rafaelle C.B. Franson: Methodology, Writing-review, Editing, Visualization. Tatiana Felix Ferreira: Conceptualization, Writing-original draft, Supervision. Priscilla F. F. Amaral: Conceptualization, Supervision, Project administration, Funding acquisition. All authors have read and approved this article for publication.

Corresponding author

Correspondence to Priscilla F. F. Amaral.

Ethics declarations

Competing Interests

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 822 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da S. Pereira, A., Souza, C.P.L., Franson, R.C.B. et al. From Agri-food Wastes to Enzyme Production: A Systematic Review with Methodi Ordinatio. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02565-6

Keywords

Navigation