Skip to main content

Advertisement

Log in

Review of solid state fermentation for lignocellulolytic enzyme production: challenges for environmental applications

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Within the context of increasing environmental concern, energy production from lignocellulosic substrates is gaining great interest. Enzymes have proven their efficiency in the degradation of the lignocellulosic complex but their use remains limited in environmental applications such as anaerobic digestion mainly due to their prohibitive cost. Therefore, solid state fermentation (SSF) emerges as an interesting alternative for the in situ production of lignocellulolytic enzymes. Various research efforts on the lab scale optimization of SSF are discussed. They are presented according to the type of inoculum used in the process: bacterial species and fungal species under both mesophilic and thermophilic conditions. In general, parameters that impact the SSF process include: substrate type and particle size, substrate pretreatment, inoculum, nutrient supplementation, moisture content, pH, aeration, temperature and mixing. Using different substrates, authors aim at maximizing enzyme production taking into account one to several of the indicated operational parameters. The reviewed research puts forward the adaptation of the operational parameters, enzyme production cost and loading, enzyme mixture quality and efficiency and finally reactor design as the main challenges for environmental large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya BK, Mohana S, Jog R, Divecha J, Madamwar D (2010) Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manag 91:2019–2027

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Anisha GS, John RP, Prema P, Pandey A (2010) Investigation on α-galactosidase production by Streptomyces griseoloalbus in a forcefully aerated packed-bed bioreactor operating in solid-state fermentation condition. Appl Biochem Biotechnol 160:421–427

    Article  CAS  Google Scholar 

  • Asha Poorna C, Prema P (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol 98:485–490

    Article  CAS  Google Scholar 

  • Ashley VM, Mitchell DA, Howes T (1999) Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors. Biochem Eng J 3:141–150

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Killburn D, Bura R, Markov A, Skamarovsky A, Okumev O, Gusakov A, Maximenko V, Gregg D, Sinitsym A, Saddler J (2005) Evaluation of noval fungal cellulase preparations for ability to hydrolyze softwood substrates—evidence for the role of accessory enzymes. Enzyme Microb Technol 37:175–184

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29:642–647

    Article  CAS  Google Scholar 

  • Chahal DS (1985) Solid state fermentation with Trichoderma reesei for cellulase production. Appl Environ Biotechnol 49:205–210

    CAS  Google Scholar 

  • Chen Y, Sharma-Shivappa RR, Chen C (2007) Ensiling agricultural residues for bioethanol production. Appl Biochem Biotechnol 143:80–92

    Article  CAS  Google Scholar 

  • Chen H, He Q, Liu L (2011) Cellulase production from the corn stover fraction based on the organ and tissue. Biotechnol Bioprocess Eng 16:867–874

    Article  CAS  Google Scholar 

  • Dave BR, Sudhir AP, Pansuriya M, Raykundaliya DP, Subramanian RB (2012) Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Biosyst Eng Bioprocess. doi:10.1007/s00449-012-0723-3

    Google Scholar 

  • Deschamps F, Giuliano C, Asther M, Huet MC, Roussos S (1985) Cellulase production by Trichoderma harzianum in static and mixed solid-state fermentation reactors under nonaseptic conditions. Biotechnol Bioeng 27:1385–1388

    Article  CAS  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulose production by a brown rot fungus Fomitopsis sp. RCK under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  Google Scholar 

  • Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101

    Article  CAS  Google Scholar 

  • Gessesse A, Mamo G (1999) High-level xylanase production by an alkaliphilic Bacillus sp. by using solid-state fermentation. Enzyme Microb Technol 25:68–72

    Article  CAS  Google Scholar 

  • Gokhale DV, Patil SG, Bastawade KB (1991) Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl Biochem Biotechnol 30:99–109

    Article  CAS  Google Scholar 

  • Guowei S, Man H, Shikai W, He C (2011) Effect of some factors on production of cellulase by Trichoderma reesei HY07I. Procedia Environ Sci 8:357–361

    Article  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AJ, Ustinov BB, Okunev ON, Burlingname R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulose mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahar K, Yano S, Fang X, Endo T, Sawayama S (2011) Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb Technol 48:162–168

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste, a global review of solid waste management. World Bank report. http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf

  • Horn SJ, Estevez MM, Nielsen HK, Linjordet R, Eijsink VG (2011) Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresour Technol 102:7932–7936

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA) (2013) World energy outlook 2013. OECD/IEA, Paris, p 232. http://www.worldenergyoutlook.org/weo2013/

  • Jabasingh SA, Nachiyar CV (2011). Response surface approach for the biodegradation of pretreated coir pith using Aspergillus nidulans SU04 for cellulase production. In: Second international conference on sustainable energy and intelligent system (SEISCON 2011)

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  • Jordan SN, Muller GN (2007) Enzymatic hydrolysis of organic waste materials in a solid–liquid system. Waste Manag 27:1820–1828

    Article  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–1104

    Article  CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  Google Scholar 

  • Kim S, Kim CH (2012) Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber. Bioproc Biosyst Eng 35:61–67

    Article  CAS  Google Scholar 

  • Kiranmayi MU, Poda S, Charyulu PBBN, Vijayalakshmi M, Krishna PV (2011) Studies on influence of natural biowastes on cellulase production by Aspergillus niger. J Env Biol 32:695–699

    CAS  Google Scholar 

  • Kotwal SM, Gote MM, Sainkar SR, Khan MI, Khire JM (1998) Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soya milk hydrolysis. Process Biochem 33:337–343

    Article  CAS  Google Scholar 

  • Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69:231–239

    Article  CAS  Google Scholar 

  • Krishna J, Khare SK, Gandhi AP (1995) Solid-state fermentation of soyhull for the production of cellulase. Bioresour Biotechnol 54:321–322

    Article  Google Scholar 

  • Lee YH, Chung YC, Jung JY (2008). Effects of chemical and enzymatic treatments on the hydrolysis of swine wastewater. In: Vth international symposium of anaerobic digestion of solid wastes and energy crops, Hammamet, Tunisia, 25–28 of May 2008

  • Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb Technol 32:305–311

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WH, Pretorius JS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Mandels M, Hontz L, Nystrom J (1974) Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng 16:1471–1493

    Article  CAS  Google Scholar 

  • Membrillo I, Sanchez C, Meneses M, Favela E, Loera O (2008) Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour Technol 99:7842–7847

    Article  CAS  Google Scholar 

  • Muniswaran AA, Sundara Moorthy S, Charyulu NCLN (2002) Transport phenomena in solid state fermentation: oxygen transport in static tray fermenters. Biotechnol Bioprocess Eng 7:362–366

    Article  CAS  Google Scholar 

  • OECD (2011) Future prospects for industrial biotechnology. OECD Publ. Accessed 28 Feb 2015. doi:10.1787/9789264126633-en

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Larroche C (2008a) Introduction. In: Pandey A, Fernandes M, Larroche C (eds) Current developments in solid state fermentation. Springer, New Delhi, pp 3–12

    Chapter  Google Scholar 

  • Pandey A, Soccol CR, Larroche C (2008b) General considerations about solid-state fermentation processes. In: Pandey A, Fernandes M, Larroche C (eds) Current developments in solid state fermentation. Springer, New Delhi, pp 13–25

    Chapter  Google Scholar 

  • Parmar N, Singh A, Ward OP (2001) Enzyme treatment to reduce solids and improve settling of sewage sludge. J Ind Microbiol Biotechnol 26:383–386

    Article  CAS  Google Scholar 

  • Qian L-C, Fu S-J, Zhou H-M, Sun J-Y, Weng X-Y (2012) Optimization of fermentation parameters for β-glucosidase production by Aspergillus niger. J Anim Vet Adv 11:583–591

    Article  Google Scholar 

  • Raimbault M (1997) General and microbiological aspects of solid substrate fermentation. In: Raimbault M, Soccol CR, Chuzel G (eds) International training course on solid state fermentation. FMS97, Curitiba

    Google Scholar 

  • Reddy GV, Ravindra Babu P, Komaraiah P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez DE, Rodriguez-Leon JA, de Carvalho JC, Sturm W, Soccol CR (2011) The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Bioresour Technol 102:10657–10662

    Article  CAS  Google Scholar 

  • Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143:27–40

    Article  CAS  Google Scholar 

  • Sermanni GG, Tiso N (2008) Aspects of design of bioreactors in SSF. In: Pandey A, Fernandes M, Larroche C (eds) Current developments in solid state fermentation. Springer, New Delhi, pp 117–144

    Chapter  Google Scholar 

  • Tan YH, Wahab MN (1997) Extracellular enzyme production during anamorphic growth in the edible mushroom Pleurotus sajor-caju. World J Microbiol Biotechnol 13:613–617

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23:398–406

    Article  CAS  Google Scholar 

  • van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13:338–344

    Article  Google Scholar 

  • Wang CL, Li DF, Lu WQ, Wang YH, Lai CH (2004) Influence of cultivating conditions on the α-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation. Lett Appl Microbiol 39:369–375

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors M. T. Moreira and T. A. Lu-Chau belong to the Galician Competitive Research Group GRC 2013-032, program co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia A. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, A.A., Arnaud, T., Lu-Chau, T.A. et al. Review of solid state fermentation for lignocellulolytic enzyme production: challenges for environmental applications. Rev Environ Sci Biotechnol 15, 31–46 (2016). https://doi.org/10.1007/s11157-016-9389-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9389-7

Keywords

Navigation