Skip to main content
Log in

Environment-Friendly and Efficient Colorimetric Sensing of Hydrogen Peroxide Based on Dalbergia sissoo Sawdust-Deposited Nickel Nanoparticles

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Hydrogen peroxide is a byproduct of respiration and an end product of various metabolic processes, such as a possible signal transmitter and peroxisomal oxidation pathways. It is one of the most common biological reactive oxygen species that can greatly affect tissues and cells. Monitoring the quantity of hydrogen peroxide with selectivity and peculiar sensitivity is required for the quantitative monitoring of hydrogen peroxide within the body. Herein, we developed a simple, environment-friendly, cost-effective, and quick approach for detecting hydrogen peroxide with high selectivity and sensitivity. Dalbergia sissoo sawdust based deposited nickel nanoparticles (Ni NPs) were synthesized using a standard hydrothermal process. The Formation of Ni NPs was analyzed by UV-Vis, FTIR, XRD, SEM, and EDX analysis techniques. As a sensor for hydrogen peroxide, the colorimetric change in TMB solution from colorless to blue-green was measured using UV-Vis spectroscopy. For optimal colorimetric response, different effecting parameters, including pH, NP loading effect, TMB concentration, and time were tuned. The proposed sensor worked best at pH 4, 2 mg NPs, 40 mM TMB, and a 5-minute incubation time. The desired sensor’s linear range is 20–110 µM with an R2 value of 0.994. The suggested sensor’s limits of detection and quantification are 0.26 and 0.88 µM, respectively. Notably, these Ni NPs demonstrated good antimicrobial activities against the Salmonella typhii bacterium and the fungus Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Most of the data generated as a result of this work has been incorporated into the paper. If further information is required, the corresponding author will be happy to provide it on a reasonable request.

References

  1. Winterbourn, C.C.: The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3–25 (2013)

    Article  Google Scholar 

  2. Rhee, S.G., Chang, T.-S., Jeong, W., Kang, D.: Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells. 29(6), 539–549 (2010)

    Article  Google Scholar 

  3. Patel, V., Kruse, P., Selvaganapathy, P.R.: Solid state sensors for hydrogen peroxide detection. Biosensors. 11(1), 9 (2020)

    Article  Google Scholar 

  4. Barnham, K.J., Masters, C.L., Bush, A.I.: Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discovery. 3(3), 205–214 (2004)

    Article  Google Scholar 

  5. Pi, J., Bai, Y., Zhang, Q., Wong, V., Floering, L.M., Daniel, K., Reece, J.M., Deeney, J.T., Andersen, M.E., Corkey, B.E.: Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 56(7), 1783–1791 (2007)

    Article  Google Scholar 

  6. Liou, G.-Y., Storz, P.: Reactive oxygen species in cancer. Free Radic. Res. 44(5), 479–496 (2010)

    Article  Google Scholar 

  7. Nishan, U., Haq, S.U., Rahim, A., Asad, M., Badshah, A., Ali Shah, A.--H., Iqbal, A., Muhammad, N.: Ionic-liquid-stabilized TiO2 nanostructures: A platform for detection of Hydrogen Peroxide. ACS Omega. 6(48), 32754–32762 (2021)

    Article  Google Scholar 

  8. Zhu, X., Li, H., Wu, T., Zhao, H., Wu, K., Xu, W., Qin, F., Chen, W., Zheng, J., Liu, Q.: In situ decorating the surface and interlayer of montmorillonite with Co0.5Ni0.5Fe2O4 nanoparticles: A sustainable, biocompatible colorimetric platform for H2O2 and acetylcholine. Nano Res. 15(10), 9319–9326 (2022)

    Article  Google Scholar 

  9. Chen, X., Wu, G., Cai, Z., Oyama, M., Chen, X.: Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta. 181(7), 689–705 (2014)

    Article  Google Scholar 

  10. Xi, X., Li, J., Wang, H., Zhao, Q., Li, H.: Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim. Acta. 182, 1273–1279 (2015)

    Article  Google Scholar 

  11. Irani-nezhad, M.H., Khataee, A., Hassanzadeh, J., Orooji, Y.: A chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules 24 (4). (2019)

  12. Nakashima, K., Wada, M., Kuroda, N., Akiyama, S., Imai, K.: High-performance liquid chromatographic determination of hydrogen peroxide with peroxyoxalate chemiluminescence detection. J. Liq. Chromatogr. Relat. Technol. 17(10), 2111–2126 (1994)

    Article  Google Scholar 

  13. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: Int. J. Devoted Fundamental Practical Aspects Electroanalysis. 18(4), 319–326 (2006)

    Article  Google Scholar 

  14. Zhu, X., Xue, Y., Hou, S., Song, P., Wu, T., Zhao, H., Osman, N.A., Alanazi, A.K., Gao, Y., Abo-Dief, H.M.: Highly selective colorimetric platinum nanoparticle-modified core-shell molybdenum disulfide/silica platform for selectively detecting hydroquinone. Adv. Compos. Hybrid. Mater. 6(4), 142 (2023)

    Article  Google Scholar 

  15. Bai, Z., Li, G., Liang, J., Su, J., Zhang, Y., Chen, H., Huang, Y., Sui, W., Zhao, Y.: Non-enzymatic electrochemical biosensor based on pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 82, 185–194 (2016)

    Article  Google Scholar 

  16. Chakraborty, A., Acharya, H.: Magnetically separable Fe3O4 NPs/MIL-53 (Al) nanocomposite catalyst for intrinsic OPD oxidation and colorimetric hydrogen peroxide detection. Colloids Surf., a. 624, 126830 (2021)

    Article  Google Scholar 

  17. Ju, J., Chen, W.: In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87(3), 1903–1910 (2015)

    Article  Google Scholar 

  18. Liu, Q., Jiang, Y., Zhang, L., Zhou, X., Lv, X., Ding, Y., Sun, L., Chen, P., Yin, H.: The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2. Mater. Sci. Engineering: C. 65, 109–115 (2016)

    Article  Google Scholar 

  19. Chen, W., Chen, J., Feng, Y.-B., Hong, L., Chen, Q.-Y., Wu, L.-F., Lin, X.-H., Xia, X.-H.: Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst. 137(7), 1706–1712 (2012)

    Article  Google Scholar 

  20. Asati, A., Santra, S., Kaittanis, C., Nath, S., Perez, J.M.: Oxidase-like activity of polymer‐coated cerium oxide nanoparticles. Angew. Chem. 121(13), 2344–2348 (2009)

    Article  Google Scholar 

  21. Mu, J., Wang, Y., Zhao, M., Zhang, L.: Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012)

    Article  Google Scholar 

  22. Li, H., Song, P., Wu, T., Zhao, H., Liu, Q., Zhu, X.: In situ decorating of montmorillonite with ZnMn2O4 nanoparticles with enhanced oxidase-like activity and its application in constructing GSH colorimetric platform. Appl. Clay Sci. 229, 106656 (2022)

    Article  Google Scholar 

  23. Lin, X., Liu, Y., Tao, Z., Gao, J., Deng, J., Yin, J., Wang, S.: Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017)

    Article  Google Scholar 

  24. Shi, W., Zhang, X., He, S., Huang, Y.: CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun. 47(38), 10785–10787 (2011)

    Article  Google Scholar 

  25. Dai, Z., Liu, S., Bao, J., Ju, H.: Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chemistry–A Eur. J. 15(17), 4321–4326 (2009)

    Article  Google Scholar 

  26. Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P., Blanco, J., Benrekaa, N.: Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 160, 435–439 (2015)

    Article  Google Scholar 

  27. Gilles, M., Zhao, J., An, M., Agboola, S.: Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 119(2), 731–737 (2010)

    Article  Google Scholar 

  28. Ngah, W.W., Hanafiah, M.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 99(10), 3935–3948 (2008)

    Article  Google Scholar 

  29. Meez, E., Rahdar, A., Kyzas, G.Z.: Sawdust for the removal of heavy metals from water: A review. Molecules. 26(14), 4318 (2021)

    Article  Google Scholar 

  30. Bayat, M., Beyki, M.H., Shemirani, F.: One-step and biogenic synthesis of magnetic Fe3O4–Fir sawdust composite: Application for selective preconcentration and determination of gold ions. J. Ind. Eng. Chem. 21, 912–919 (2015)

    Article  Google Scholar 

  31. Aminullah, A., Syed Mustafa, S., Nor Azlan, M., Mohd. Hafizi, N., Mohd. Ishak, Z., Rozman, H.: Effect of filler composition and incorporation of additives on the mechanical properties of polypropylene composites with high loading lignocellulosic materials. J. Reinf. Plast. Compos. 29(20), 3115–3124 (2010)

    Article  Google Scholar 

  32. Khan, S., Shujah, S., Nishan, U., Afridi, S., Asad, M., Shah, A.H.A., Khan, N., Ramzan, S., Khan, M.: Nannorrhops Ritchiana Leaf-based biomolecular extract-mediated silver nanoparticles as a platform for Mercury (II) sensing, antimicrobial activity, and DNA Interaction. Arab. J. Sci. Eng. 1–12. (2023)

  33. Rodríguez-Llamazares, S., Merchán, J., Olmedo, I., Marambio, H.P., Muñoz, J.P., Jara, P., Sturm, J.C., Chornik, B., Peña, O., Yutronic, N.: Ni/Ni oxides nanoparticles with potential biomedical applications obtained by displacement of a nickel-organometallic complex. J. Nanosci. Nanotechnol. 8(8), 3820–3827 (2008)

    Article  Google Scholar 

  34. Takahashi, R., Sato, S., Sodesawa, T., Kamomae, Y.: Measurement of the diffusion coefficient of nickel nitrate in wet silica gel using UV/VIS spectroscope equipped with a flow cell. Phys. Chem. Chem. Phys. 2(6), 1199–1204 (2000)

    Article  Google Scholar 

  35. Singla, M., Negi, A., Mahajan, V., Singh, K., Jain, D.: Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl. Catal. A. 323, 51–57 (2007)

    Article  Google Scholar 

  36. Wahab, M.A., Jellali, S., Jedidi, N.: Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101(14), 5070–5075 (2010)

    Article  Google Scholar 

  37. Chen, Y., Peng, D.-L., Lin, D., Luo, X.: Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology. 18(50), 505703 (2007)

    Article  Google Scholar 

  38. Cheng, J., Zhang, X., Ye, Y.: Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. J. Solid State Chem. 179(1), 91–95 (2006)

    Article  Google Scholar 

  39. Nishan, U., Ullah, W., Muhammad, N., Asad, M., Afridi, S., Khan, M., Shah, M., Khan, N., Rahim, A.: Development of a nonenzymatic colorimetric sensor for the detection of uric acid based on ionic liquid-mediated nickel nanostructures. ACS Omega. 7(30), 26983–26991 (2022)

    Article  Google Scholar 

  40. Zarif, F., Rauf, S., Khurshid, S., Muhammad, N., Hayat, A., Rahim, A., Shah, N.S., Yang, C.P.: Effect of pyridinium based ionic liquid on the sensing property of Ni0 nanoparticle for the colorimetric detection of hydrogen peroxide. J. Mol. Struct. 1219, 128620 (2020)

    Article  Google Scholar 

  41. Lian, J., Yin, D., Zhao, S., Zhu, X., Liu, Q., Zhang, X., Zhang, X.: Core-shell structured Ag-CoO nanoparticles with superior peroxidase-like activity for colorimetric sensing hydrogen peroxide and o-phenylenediamine. Colloids Surf., a. 603, 125283 (2020)

    Article  Google Scholar 

  42. Chen, H., Shi, Q., Deng, G., Chen, X., Yang, Y., Lan, W., Hu, Y., Zhang, L., Xu, L., Li, C.: Rapid and highly sensitive colorimetric biosensor for the detection of glucose and hydrogen peroxide based on nanoporphyrin combined with bromine as a peroxidase-like catalyst. Sens. Actuators B. 343, 130104 (2021)

    Article  Google Scholar 

  43. Aneesh, K., Berchmans, S.: Enhanced peroxidase-like activity of CuWO4 nanoparticles for the detection of NADH and hydrogen peroxide. Sens. Actuators B. 253, 723–730 (2017)

    Article  Google Scholar 

  44. Liu, H., Zhu, L., Ma, H., Wen, J., Xu, H., Qiu, Y., Zhang, L., Li, L., Gu, C.: Copper (II)-coated Fe3O4 nanoparticles as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Microchim. Acta. 186(8), 1–9 (2019)

    Article  Google Scholar 

  45. Huang, X., Zhou, H., Huang, Y., Jiang, H., Yang, N., Shahzad, S.A., Meng, L., Yu, C.: Silver nanoparticles decorated and tetraphenylethene probe doped silica nanoparticles: A colorimetric and fluorometric sensor for sensitive and selective detection and intracellular imaging of hydrogen peroxide. Biosens. Bioelectron. 121, 236–242 (2018)

    Article  Google Scholar 

  46. Yang, W., Weng, C., Li, X., He, H., Fei, J., Xu, W., Yan, X., Zhu, W., Zhang, H., Zhou, X.: A sensitive colorimetric sensor based on one-pot preparation of h-Fe3O4@ ppy with high peroxidase-like activity for determination of glutathione and H2O2. Sens. Actuators B. 338, 129844 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thanks Researchers Supporting Project Number (RSP2024R45) at King Saud University Riyadh Saudi Arabia for financial support.

Funding

This research work was supported by researchers supporting Project number (RSP2024R45) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umar Nishan or Mohibullah Shah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishan, U., Ullah, K., Muhammad, N. et al. Environment-Friendly and Efficient Colorimetric Sensing of Hydrogen Peroxide Based on Dalbergia sissoo Sawdust-Deposited Nickel Nanoparticles. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02525-0

Keywords

Navigation