Skip to main content
Log in

Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hierarchically structured ZnO hybridized with graphitic carbon nitride (g-C3N4) is introduced as a new material for non-enzymatic photoelectrochemical sensing of hydrogen peroxide (H2O2). It is based on the measurement of the decrease in the photocurrent produced by H2O2 which consumes the photoinduced electrons ejected by the ZnO/g-C3N4 composite. The g-C3N4 has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers. This results in an enhanced photocurrent and high-sensitivity. The ZnO/g-C3N4 composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectrometry, and UV–vis spectrophotometry. Under the optimized condition, the sensor has a linear response to hydrogen peroxide in the 1.3–79.8 nM concentration range, and the detection limit is 0.38 nM. The sensor is sensitive, selective, stable and can be fabricated at low costs.

A novel ZnO/g-C3N4-based photoanode has been constructed for non-enzymatic photoelectrochemical sensing of H2O2 and the mechanism has been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49

    Article  CAS  Google Scholar 

  2. Chang Q, Zhu LH, Jiang GD, Tang HQ (2009) Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal Bioanal Chem 395:2377

    Article  CAS  Google Scholar 

  3. Dickinson BC, Huynh C, Chang CJ (2010) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132:5906

    Article  CAS  Google Scholar 

  4. Jin H, Heller DA, Kalbacova M, Kim JH, Zhang JQ, Boghossian AA, Maheshri N, Strano MS (2010) Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nanotechnol 5:302

    Article  CAS  Google Scholar 

  5. Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J Am Chem Soc 132:4455

    Article  CAS  Google Scholar 

  6. Rubtsova MY, Kovba GV, Egorov AM (1998) Chemiluminescent biosensors based on porous supports with immobilized peroxidase. Biosens Bioelectron 13:75

    Article  CAS  Google Scholar 

  7. Chen WW, Li BX, Xu CL, Wang L (2009) Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosens Bioelectron 24:2534

    Article  CAS  Google Scholar 

  8. Zhang YY, Yuan R, Chai YQ, Xiang Y, Hong CL, Ran XQ (2010) An amperometric hydrogen peroxide biosensor based on the immobilization of HRP on multi-walled carbon nanotubes/electro-copolymerized nano-Pt-poly(neutral red) composite membrane. Biochem Eng J 51:102

    Article  CAS  Google Scholar 

  9. Zhao J, Yan YL, Zhu L, Li XX, Li GX (2013) An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron 41:815

    Article  CAS  Google Scholar 

  10. Wang YH, Yang XJ, Bai J, Jiang X, Fan GY (2013) High sensitivity hydrogen peroxide and hydrazine sensor based on silver nanocubes with rich {100} facets as an enhanced electrochemical sensing platform. Biosens Bioelectron 43:180

    Article  CAS  Google Scholar 

  11. Xu X, Jiang SJ, Hu Z, Liu SQ (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292

    Article  CAS  Google Scholar 

  12. Zhang LM, Wang JL, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471

    Article  CAS  Google Scholar 

  13. Klassen NV, Marchington D, McGowan HCE (1994) H2O2 determination by the I3- method and by KMnO4 titration. Anal Chem 66:2921

    Article  CAS  Google Scholar 

  14. Liang AH, Zhang NN, Jiang ZL, Wang SM (2008) A sensitive resonance scattering spectral assay for the determination of trace H2O2 based on the HRP catalytic reaction and nanogold aggregation. J Fluoresc 18:1035

    Article  CAS  Google Scholar 

  15. Shang L, Chen HJ, Deng L, Dong SJ (2008) Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Biosens Bioelectron 23:1180

    Article  CAS  Google Scholar 

  16. Pinkernell U, Effkemann S, Karst U (1997) Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Anal Chem 69:3623

    Article  CAS  Google Scholar 

  17. Butwong N, Zhou L, Ng-eontae W, Burakham R, Moore E, Srijaranai S, Luong JHT, Glennon JD (2014) A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J Electroanal Chem 717–718:41

    Article  Google Scholar 

  18. Yan Z, Zhao J, Qin L, Mu F, Wang P, Feng X (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180:145

    Article  CAS  Google Scholar 

  19. Zhang XR, Guo YS, Liu MS, Zhang SS (2013) Photoelectrochemically active species and photoelectrochemical biosensors. RSC Adv 3:2846

    Article  CAS  Google Scholar 

  20. Yue Z, Lisdat F, Parak WJ, Hickey SG, Tu LP, Sabir N, Dorfs D, Bigall NC (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5:2800

    Article  CAS  Google Scholar 

  21. Zhao WW, Xu JJ, Chen HY (2014) Photoelectrochemical DNA biosensors. Chem Rev 114:7421

    Article  CAS  Google Scholar 

  22. Chen D, Zhang H, Li X, Li JH (2010) Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal Chem 82:2253

    Article  CAS  Google Scholar 

  23. Zhang XM, Li LM, Peng X, Chen RS, Huo KF, Chu PK (2013) Non-enzymatic hydrogen peroxide photoelectrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta 108:491

    Article  CAS  Google Scholar 

  24. Li HB, Li J, Xu Q, Hu XY (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem 83:9681

    Article  CAS  Google Scholar 

  25. Tu WW, Wang WJ, Lei JP, Deng SY, Ju HX (2012) Chemiluminescence excited photoelectrochemistry using graphene–quantum dots nanocomposite for biosensing. Chem Commun 48:6535

    Article  CAS  Google Scholar 

  26. Tu WW, Dong YT, Lei JP, Ju HX (2010) Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem 82:8711

    Article  CAS  Google Scholar 

  27. Li J, Tu WW, Li HB, Han M, Lan YQ, Dai ZH, Bao JC (2014) In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized grapheme. Anal Chem 86:1306

    Article  CAS  Google Scholar 

  28. Li J, Tu WW, Li HB, Bao JC, Dai ZH (2014) In situ generated AgBr-enhanced ZnO nanorod-based photoelectrochemical aptasensing via layer-by-layer assembly. Chem Commun 50:2108

    Article  CAS  Google Scholar 

  29. Zhang QF, Chou TP, Russo B, Jenekhe SA, Cao GZ (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 120:2436

    Article  Google Scholar 

  30. Shi YT, Zhu C, Wang L, Zhao CY, Li W, Fung KK, Ma TL, Hagfeldt A, Wang N (2013) Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42 % for quasi-solid dye-sensitized solar cells. Chem Mater 25:1000

    Article  CAS  Google Scholar 

  31. Zhang YJ, Mori T, Ye JH, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294

    Article  CAS  Google Scholar 

  32. Cui YJ, Ding ZX, Liu P, Antonietti M, Fu XZ, Wang XC (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys 14:1455

    Article  CAS  Google Scholar 

  33. Zhang GG, Zhang JS, Zhang MW, Wang XC (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083

    Article  CAS  Google Scholar 

  34. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76

    Article  CAS  Google Scholar 

  35. Wang YJ, Shi R, Lin J, Zhu YF (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Natural Science Foundation of China (21305123), the Natural Science Foundation of Jiangsu Province (BK2012247), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJB430023), the Foundation of Jiangsu Key Laboratory of Environmental Material and Environmental Engineering (K13064), and the Foundation of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Li, J., Wang, H. et al. Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta 182, 1273–1279 (2015). https://doi.org/10.1007/s00604-015-1448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1448-1

Keywords

Navigation