Skip to main content
Log in

Solution Combustion Synthesis of New Composites Based on Iron Oxide and Mango Waste for Heterogeneous Photocatalysis with UV and Solar Radiation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Materials based on iron oxide were prepared via a closed system solution combustion synthesis (IOP), evaluating the effect of adding mango seed husk (T), peel (C), and a mixture of the portions (M) on the material properties obtained (IOT, IOC, and IOM, respectively). The structural (XRD, Mössbauer), morphological (SEM and TEM), optical (UV-VIS diffuse reflectance), textural (BET), and magnetic (VSM) properties of the materials obtained were evaluated. Different phase compositions (hematite, magnetite, and maghemite) were identified in the structure of the materials. Adding mango residue favored the formation of magnetite with superparamagnetic particles in the IOC sample. The solids were evaluated in the methylene blue photocatalysis at different concentrations, observing different effects on the discoloration rate. The IOP sample performed better at the lowest concentration (50 mg L−1) of the dye, with 98% discoloration after 90 min and a specific speed of 44.7 × 10−3 min−1, which can be explained by the heterojunction effect, making electronic recombination harder and increasing the quantum yield of the photocatalyst. At 70 mg L−1 concentration, the best catalyst was the IOM with 82% discoloration and a specific speed of 15.8 × 10−3 min−1, explained by the increase in the specific area due to the insertion of biomass, which improved adsorptive capacity, maintaining the observed heterojunction effects. Under sunlight, the best composite was IOC, with 90.5% discoloration and activity of 29.8 × 10−3 min−1, justified by combining favorable textural and optical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

I declare that all data generated in this study are available in the manuscript and supplementary material.

References

  1. Al Hamedi, F.H., Kandhan, K., Liu, Y., Ren, M., Jaleel, A., Alyafei, M.A.M.: Waste water irrigation: A promising way for future sustainable agriculture and food security in the United Arab Emirates. Water 15, 2284 (2023). https://doi.org/10.3390/w15122284

  2. Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Pereira M.F.R., Silva A.M.T.: A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater. 15, 344:146–162 (2018). https://doi.org/10.1016/j.jhazmat.2017.09.058

  3. Odling, G., Robertson, N.: Bridging the gap between laboratory and application in photocatalytic water purification. Catal. Sci. Technol. 9, 533–545 (2019). https://doi.org/10.1039/C8CY02438C

    Article  Google Scholar 

  4. SinarMashuri, S.I., Ibrahim, M.L., Kasim, M.F., Mastuli, M.S., Rashid, U., Abdullah, A.H., Islam, A., AsikinMijan, N., Tan, Y.H., Mansir, N., MohdKaus, N.H., Yun Hin, T.-Y.: Photocatalysis for organic wastewater treatment: from the basis to current challenges for society. Catalysts 10, 1260 (2020). https://doi.org/10.3390/catal10111260

    Article  Google Scholar 

  5. Hashimoto, K., Irie, H., Fujishima, A.: TiO 2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005). https://doi.org/10.1143/JJAP.44.8269

    Article  Google Scholar 

  6. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  7. Rodríguez, E.M., Fernández, G., Álvarez, P.M., Hernández, R., Beltrán, F.J.: Photocatalytic degradation of organics in water in the presence of iron oxides: effects of pH and light source. Appl. Catal. B Environ. 102, 572–583 (2011). https://doi.org/10.1016/j.apcatb.2010.12.041

    Article  Google Scholar 

  8. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., et al.: Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14, 242 (2022). https://doi.org/10.3390/w140202429

    Article  Google Scholar 

  9. Ohtani, B., Amano, F., Malato, S., Guillard, C., Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C.: Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A Chem. 276, 31–40 (2014). https://doi.org/10.1016/j.jphotochem.2013.11.011

    Article  Google Scholar 

  10. Giannakis, S., Liu, S., Carratalà, A., Rtimi, S., TalebiAmiri, M., Bensimon, M., Pulgarin, C.: Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. J. Hazard. Mater. 339, 223–231 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.037

    Article  Google Scholar 

  11. Ganguly, P., Byrne, C., Breen, A., Pillai, S.C.: Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 225, 51–75 (2018). https://doi.org/10.1016/j.apcatb.2017.11.018

    Article  Google Scholar 

  12. Yang, L., Hakki, A., Wang, F., Macphee, D.E.: Photocatalyst efficiencies in concrete technology: the effect of photocatalyst placement. Appl. Catal. B Environ. 222, 200–208 (2018). https://doi.org/10.1016/j.apcatb.2017.10.013

    Article  Google Scholar 

  13. Rocha, V.M.D.S., Pereira, M.D.G., Teles, L.R., Souza, M.O.D.G.: Effect of copper on the photocatalytic activity of semiconductor-based titanium dioxide (anatase) and hematite (α-Fe2O3). Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 185, 13–20 (2014). https://doi.org/10.1016/j.mseb.2014.02.004

    Article  Google Scholar 

  14. Mohamed, H.H., Alomair, N.A., Akhtar, S., Youssef, T.E.: Eco-friendly synthesized α-Fe2O3/TiO2 heterojunction with enhanced visible light photocatalytic activity. J. Photochem. Photobiol. A Chem. 382, 1–12 (2019). https://doi.org/10.1016/j.jphotochem.2019.111951

    Article  Google Scholar 

  15. Pang, Y.L., Lim, S., Ong, H.C., Chong, W.T.: Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34 (2016). https://doi.org/10.1016/j.ceramint.2015.08.144

    Article  Google Scholar 

  16. Bora, L.V., Mewada, R.K.: Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew. Sustain. Energy Rev. 76, 1393–1421 (2017). https://doi.org/10.1016/j.rser.2017.01.130

    Article  Google Scholar 

  17. Su, C.: Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J. Hazard. Mater. 322, 48–84 (2017). https://doi.org/10.1016/j.jhazmat.2016.06.060

    Article  Google Scholar 

  18. Alp, E., Aydogan, N.: A comparative study: synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere. Colloids Surfaces A Physicochem. Eng. Asp. 510, 205–212 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.033

    Article  Google Scholar 

  19. Shamaila, S., Bano, T., Sajjad, A.K.L.: Efficient visible light magnetic modified iron oxide photocatalysts. Ceram. Int. 43, 14672–14677 (2017). https://doi.org/10.1016/j.ceramint.2017.07.193

    Article  Google Scholar 

  20. da Silva, C.P., dos Santos, A.V., Oliveira, A.S., Souza, M.O.G.: Synthesis of composites and study of the thermal behavior of sugarcane bagasse/iron nitrate mixtures in different proportions. J. Therm. Anal. Calorim. 131, 611–620 (2017). https://doi.org/10.1007/s10973-017-6260-1

    Article  Google Scholar 

  21. Sarkar, T., Tiwari, S., Rawat, K., Solanki, P.R., Bohidar, H.B.: Hydrophilic, fluorescent and superparamagnetic iron oxide-carbon composite nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 514, 218–225 (2017). https://doi.org/10.1016/j.colsurfa.2016.11.061

    Article  Google Scholar 

  22. Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Garg, V., Sapag, K., Lago, R.M.: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon N. Y. 40, 2177–2183 (2002). https://doi.org/10.1016/S0008-6223(02)00076-3

    Article  Google Scholar 

  23. Ramos, L.T. dos S., Santos, L.M., Machado, A.E.H., Souza, M.O.G.: Synthesis, characterization and photocatalytic activity of a composite based on TiO2 and active carbon prepared from mango pit. Sci. Plena. 17, 1–16 (2021). https://doi.org/10.14808/sci.plena.2021.077201

    Article  Google Scholar 

  24. Arshad, A., Iqbal, J., Ahmad, I., Israr, M.: Graphene/Fe3O4 nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange. Ceram. Int. 44, 1 (2017). https://doi.org/10.1016/j.ceramint.2017.08.157

    Article  Google Scholar 

  25. Souza, M.O.G., dos Santos, M.V.R., Castro, L.M.F., da Silva, C.P.: Production and in situ transformation of hematite into magnetite from the thermal decomposition of iron nitrate or goethite mixed with biomass. J. Therm. Anal. Calorim. 133, 1731–1739 (2019). https://doi.org/10.1007/s10973-019-08639-1

    Article  Google Scholar 

  26. Souza, M.O.G., Rebouças, L.M., de Castro, L.M.F.: Characterization and thermal decomposition study of mango residue biomass (Mangifera indica L.). J. Therm. Anal. Calorim. 137, 1811–1816 (2019). https://doi.org/10.1007/s10973-019-08540-x

    Article  Google Scholar 

  27. Pereira da Silva, C., Souza, M.O.G., Santos, W.N.L., Silva, L.O.B.: Optimization of the production parameters of composites from sugarcane bagasse and iron salts for use in dye adsorption. Sci. World J. 2019, 1–12 (2019). https://doi.org/10.1155/2019/8173429

    Article  Google Scholar 

  28. Asuha, S., Zhao, S., Jin, X.H., Hai, M.M., Bao, H.P.: Effects of synthetic routes of Fe–urea complex on the synthesis of γ-Fe2O3 nanopowder. Appl. Surf. Sci. 255, 8897–8901 (2009). https://doi.org/10.1016/j.apsusc.2009.06.082

    Article  Google Scholar 

  29. Monteiro, D.S., da Guarda Souza, M.O.: Thermal decomposition of precursors and iron oxide properties. J. Therm. Anal. Calorim. 123, 955–963 (2016). https://doi.org/10.1007/s10973-015-4840-5

    Article  Google Scholar 

  30. Novitskaya, E., Kelly, J.P., Bhaduri, S., Graeve, O.A.: A review of solution combustion synthesis: an analysis of parameters controlling powder characteristics. Int. Mater. Rev. 66, 188–214 (2021). https://doi.org/10.1080/09506608.2020.1765603

    Article  Google Scholar 

  31. Ianoş, R., Tăculescu, A., Păcurariu, C., Lazău, I.: Solution combustion synthesis and characterization of magnetite, Fe3O4. Nanopowders. J. Am. Ceram. Soc. 95, 2236–2240 (2012). https://doi.org/10.1111/j.1551-2916.2012.05159.x

    Article  Google Scholar 

  32. Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  Google Scholar 

  33. Kopp Alves, A., Bergmann, C.P., Berutti, F.A.: Novel synthesis and characterization of nanostructured materials. Springer, Berlin (2013)

    Book  Google Scholar 

  34. Jain, S.R., Adiga, K.C., PaiVerneker, V.R.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71–79 (1981). https://doi.org/10.1016/0010-2180(81)90111-5

    Article  Google Scholar 

  35. Huang, M., Qin, M., Cao, Z., Jia, B., Chen, P., Wu, H., Wang, X., Wan, Q., Qu, X.: Magnetic iron nanoparticles prepared by solution combustion synthesis and hydrogen reduction. Chem. Phys. Lett. 657, 33–38 (2016). https://doi.org/10.1016/j.cplett.2016.05.043

    Article  Google Scholar 

  36. Castro, L.M.C., Souza, M.O.G.: Effects of the addition of mango residue on solution combustion synthesis of iron oxides. J. Therm. Anal. Calorim. 147(13), 7183–7191 (2022). https://doi.org/10.1007/s10973-021-11031-7

    Article  Google Scholar 

  37. Lima, G.L., Oliveira, R.W.L., de Jesus Neto, R.M., Gomes, A.M. de S., Fiuza Junior, R.A., Andrade, H.M.C., Mascarenhas, A.J.S.: Single Step synthesis of magnetic materials derived from biomass residues. Waste Biomass Valor. 12, 1039–1050 (2021). https://doi.org/10.1007/s12649-020-01003-7

    Article  Google Scholar 

  38. Ianoş, R., Păcurariu, C., Muntean, S.G., Muntean, E., Nistor, M.A., Nižňanský, D.: Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 741, 1235–1246 (2018). https://doi.org/10.1016/j.jallcom.2018.01.240

    Article  Google Scholar 

  39. Wu, W., Jiang, C.Z., Roy, V.A.L.L.: Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8, 19421–19474 (2016). https://doi.org/10.1039/C6NR07542H

    Article  Google Scholar 

  40. Sauthier, M.C. da S., da Silva, E.G.P., Santos, B.R. da S., Silva, E.F.R., Caldas, J. da C., Minho, L.A.C., dos Santos, A.M.P., dos Santos, W.N.L.: Screening of Mangifera indica L functional content using PCA and neural networks (ANN). Food Chem. 273, 115–123 (2019). https://doi.org/10.1016/j.foodchem.2018.01.129

    Article  Google Scholar 

  41. Orozco, R.S., Hernández, P.B., Morales, G.R., Núñez, F.U., Villafuerte, J.O., Lugo, V.L., Ramírez, N.F., Díaz, C.E.B., Vázquez, P.C.: Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources 9, 1873–1885 (2014). https://doi.org/10.15376/biores.9.2.1873-1885

    Article  Google Scholar 

  42. Girod, M., Vogel, S., Szczerba, W., Thünemann, A.F.: How temperature determines formation of maghemite nanoparticles. J. Magn. Magn. Mater. 380, 163–167 (2015). https://doi.org/10.1016/j.jmmm.2014.09.057

    Article  Google Scholar 

  43. Fathi, H., Masoudpanah, S.M.M., Alamolhoda, S., Parnianfar, H.: Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe3O4 powders. Ceram. Int. 43, 7448–7453 (2017). https://doi.org/10.1016/j.ceramint.2017.03.017

    Article  Google Scholar 

  44. Múzquiz-Ramos, E.M., Guerrero-Chávez, V., Macías-Martínez, B.I., López-Badillo, C.M., García-Cerda, L.A.: Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceram. Int. 41, 397–402 (2014). https://doi.org/10.1016/j.ceramint.2014.08.083

    Article  Google Scholar 

  45. Babay, S., Mhiri, T., Toumi, M.: Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 1085, 286–293 (2015). https://doi.org/10.1016/j.molstruc.2014.12.067

    Article  Google Scholar 

  46. Shokrollahi, H.: A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 426, 74–81 (2017). https://doi.org/10.1016/j.jmmm.2016.11.033

    Article  Google Scholar 

  47. Darezereshki, E., Bakhtiari, F., Alizadeh, M., Behradvakylabad, A., Ranjbar, M.: Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater. Sci. Semicond. Process. 15, 91–97 (2012). https://doi.org/10.1016/j.mssp.2011.09.009

    Article  Google Scholar 

  48. Păcurariu, C., Paşka, O., Ianoş, R., Muntean, S.G.: Effective removal of methylene blue from aqueous solution using a new magnetic iron oxide nanosorbent prepared by combustion synthesis. Clean Technol. Environ. Policy 18, 705–715 (2016). https://doi.org/10.1007/s10098-015-1041-7

    Article  Google Scholar 

  49. Elizalde-González, M.P., Hernández-Montoya, V.: Characterization of mango pit as raw material in the preparation of activated carbon for wastewater treatment. Biochem. Eng. J. 36, 230–238 (2007). https://doi.org/10.1016/j.bej.2007.02.025

    Article  Google Scholar 

  50. Davies, G., McGregor, J.: Hydrothermal synthesis of biomass-derived magnetic carbon composites for adsorption and catalysis. ACS Ômega 6, 33000–33009 (2021). https://doi.org/10.1021/acsomega.1c05116

    Article  Google Scholar 

  51. Silva, F.S., Nascimento, S.S., Santos, A.V., da Guarda Souza, M.O.: Study of the thermal decomposition of mixtures sugarcane bagasse/titanium dioxide. J. Therm. Anal. Calorim. 148, 37–47 (2023). https://doi.org/10.1007/s10973-022-11583-2

    Article  Google Scholar 

  52. Kadirova, Z.C., Hojamberdiev, M., Katsumata, K.I., Isobe, T., Matsushita, N., Nakajima, A., Okada, K.: Fe2O3-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes. Appl. Surf. Sci. 402, 444–455 (2017). https://doi.org/10.1016/j.apsusc.2017.01.131

    Article  Google Scholar 

  53. Mohamed, M.M., Bayoumy, W.A.A., Goher, M.E.E., Abdo, M.H.H., Mansour El-Ashkar, T.Y.Y.: Optimization of α-Fe2O3 @Fe3O4 incorporated N-TiO2 as super effective photocatalysts under visible light irradiation. Appl. Surf. Sci. 412, 668–682 (2017). https://doi.org/10.1016/j.apsusc.2017.03.200

    Article  Google Scholar 

  54. Castro, J.D.S., das Virgens, C.F.: Thermal decomposition of Nephelium lappaceum L. peel. J. Therm. Anal. Calorim. 138, 3541–3549 (2019). https://doi.org/10.1007/s10973-019-08289-3

    Article  Google Scholar 

  55. Carvalho, M.S.S., Virgens, C.F.F.: Effect of alkaline treatment on the fruit peel of Pachira aquatic Aubl.: physico-chemical evaluation and characterization. Microchem. J. 143, 410–415 (2018). https://doi.org/10.1016/j.microc.2018.08.021

    Article  Google Scholar 

  56. Tyapkin, P.Y., Petrov, S.A., Chernyshev, A.P., Larichev, Y.V., Kirik, S.D., Gribov, P.A., Uvarov, N.F.: Properties of iron oxides inserted into SBA-15 mesoporous silica. Mater. Today Proc. 4, 11392–11395 (2017). https://doi.org/10.1016/j.matpr.2017.09.015

    Article  Google Scholar 

  57. Hadadian, S., Masoudpanah, S.M., Alamolhoda, S.: Solution combustion synthesis of Fe3O4 powders using mixture of CTAB and citric acid fuels. J. Supercond. Nov. Magn. 32, 353–360 (2019). https://doi.org/10.1007/s10948-018-4685-9

    Article  Google Scholar 

  58. Radpour, M., Alamolhoda, S., Masoudpanah, S.M.: Effects of pH value on the microstructure and magnetic properties of solution combusted Fe3O4 powders. Ceram. Int. 43, 13729–13734 (2017). https://doi.org/10.1016/j.ceramint.2017.07.085

    Article  Google Scholar 

  59. Guardia, P., Riccardo Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-Hernandez, M., Gazeau, F., Manna, L., Teresa Pellegrino, T.: Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. CS Nano 6(4), 3080–3091 (2012). https://doi.org/10.1021/nn2048137

    Article  Google Scholar 

  60. Bhavani, P., Reddy, N.R., Reddy, I.V.S., Sakar, M.: Manipulation over phase transformation in iron oxide nanoparticles via calcination temperature and their effect on magnetic and dielectric properties. IEEE Trans. Magn. 53(9), 1–5 (2017). https://doi.org/10.1109/TMAG.2017.2715320

    Article  Google Scholar 

  61. Marschall, R.: Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2014). https://doi.org/10.1002/adfm.201303214

    Article  Google Scholar 

  62. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., He, J.: Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326 (2013). https://doi.org/10.1039/c3nr01577g

    Article  Google Scholar 

  63. Sun, B., Zhou, W., Li, H., Ren, L., Qiao, P., Xiao, F., Wang, L., Jiang, B., Fu, H.: Magnetic Fe2O3/mesoporous black TiO2hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl. Catal. B Environ. 221, 235–242 (2018). https://doi.org/10.1016/j.apcatb.2017.09.023

    Article  Google Scholar 

  64. Fu, H., Sun, S., Yang, X., Li, W., An, X., Zhang, H., Dong, Y., Jiang, X., Yu, A.: A facile coating method to construct uniform porous α-Fe2O3@TiO2 core-shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol. 328, 389–396 (2018). https://doi.org/10.1016/j.powtec.2018.01.067

    Article  Google Scholar 

  65. Hitam, C.N.C., Jalil, A.A.: A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manage. 258(110050), 1–19 (2020). https://doi.org/10.1016/j.jenvman.2019.110050

    Article  Google Scholar 

  66. Colmenares, J.C., Luque, R.: Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev. 43, 765–778 (2014). https://doi.org/10.1039/C3CS60262A

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding. Coordination for higher Education Staff Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marluce Oliveira da Guarda Souza.

Ethics declarations

Competing Interests

The authors would like to thank the Applied Chemistry Postgraduate Program (PGQA) of Universidade do Estado da Bahia (UNEB) for the granted infrastructure and the Higher Education Personnel Improvement Coordination (Capes) for their financial support.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The nanomaterials were based on iron oxide and carbonaceous material.

• The composites showed the typical magnetic behavior of non-stoichiometric magnetite.

• The microscopy results denote a modification of the morphology, maintaining the degree of crystallinity with the insertion of biomass residue.

• The photocatalytic activity was appreciable in all tested systems, emphasizing the system’s use of sunlight.

Statement of novelty

This study presents a new ecologically friendly preparation route employing combustion syntheses in a closed system of new composites based on iron oxide and carbonaceous material, using mango waste seed husk (T), peel (C), and mixture of the portions (M), with suitable properties for application in heterogeneous photocatalysis with UV and solar radiation, constituting an important contribution to the treatment of effluents contaminated with organic pollutants, especially textile dyes.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 686 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, L.M.F., Huaman, N.R.C. & da Guarda Souza, M.O. Solution Combustion Synthesis of New Composites Based on Iron Oxide and Mango Waste for Heterogeneous Photocatalysis with UV and Solar Radiation. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02511-6

Keywords

Navigation