Skip to main content
Log in

Analyzing the Effects of Culture Media Additives on Oxalic Acid Bioproduction for Use in Metal Bioleaching

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Oxalic acid, widely used in industries like metallurgy, was produced using A. niger in this study. Different culture media additives, including manganese ions, ethanol, carbonate ions, sodium citrate, sodium oxalate, succinic acid, ascorbic acid, and buffered medium, were investigated for their impact on oxalic acid production. The study also assessed the effectiveness of biogenerated oxalic acid for extracting metals from autocatalyst waste. Findings showed that adding 6 g/L sodium citrate, 6 g/L disodium oxalate, 0.1 g/L MnSO4·H2O, 1%(v/v) ethanol, 5 g/L CaCO3, and a buffered medium at pH 6 stimulated the highest production of oxalic acid, resulting in concentrations of 9228, 10,804, 4952, 5289, 6955, and 11,929 mg/L, respectively. Without any additives, the production of oxalic acid was measured at 4727 mg/L. Oxalic acid exhibited greater efficiency in extracting Pt and Pd from autocatalyst waste at low pH. However, CaCO3 and buffer medium, while effective for high oxalic acid production, created an unsuitable high pH environment for metal extraction. Consequently, by incorporating the combination of screened additives into the liquid fungal culture medium, higher oxalic acid production was achieved in a shorter cultivation time while maintaining a suitable pH for the metal leaching process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Faraji, F., Golmohammadzadeh, R., Sharifidarabad, H., Rashchi, F.: An investigation of bioleaching and valorization of hazardous zinc plant purification residue using Aspergillus Niger. Int. J. Environ. Sci. Technol. 20(8), 8785–8798 (2022)

    Article  Google Scholar 

  2. de Oliveira Demarco, J., Cadore, J.S., Veit, H.M., Madalosso, H.B., Tanabe, E.H., Bertuol, D.A.: Leaching of platinum group metals from spent automotive catalysts using organic acids. Min. Eng. 159, 106634 (2020)

    Article  Google Scholar 

  3. Polák, F., Urík, M., Bujdoš, M., Kim, H., Matúš, P.: Fungal bioextraction of iron from kaolin. Chem. Pap. 73, 3025–3029 (2019)

    Article  Google Scholar 

  4. Bahaloo-Horeh, N., Mousavi, S.M.: Efficient extraction of critical elements from end-of-life automotive catalytic converters via alkaline pretreatment followed by leaching with a complexing agent. J. Clean Prod. 344, 131064 (2022)

    Article  Google Scholar 

  5. Plassard, C., Fransson, P.: Regulation of low-molecular weight organic acid production in fungi. Fungal Biol. Rev. 23, 30–39 (2009)

    Article  Google Scholar 

  6. Palmieri, F., Estoppey, A., House, G.L., Lohberger, A., Bindschedler, S., Chain, P.S.G., Junier, P.: Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. Adv. Appl. Microbiol. 106, 49–77 (2019)

    Article  Google Scholar 

  7. Parsa, A., Bahaloo-Horeh, N., Mousavi, S.M.: A kinetic study of indium, aluminum, arsenic, and strontium extraction from LCDs using biometabolites produced by Aspergillus Niger. Min. Eng. 205, 108441 (2024)

    Article  Google Scholar 

  8. Chioma, D.M., Agwa, O.K.: Optimization for oxalic acid production by Aspergillus Niger using response surface methodology. J. Adv. Microbiol. 17(3), 1–8 (2019)

    Google Scholar 

  9. Bahaloo-Horeh, N., Mousavi, S.M.: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger. Waste Manag. 60, 666–679 (2017)

    Article  Google Scholar 

  10. Nielsen, K.F., Mogensen, J.M., Johansen, M., Larsen, T.O., Frisvad, J.C.: Review of secondary metabolites and mycotoxins from the Aspergillus Niger group. Anal. Bioanal. Chem. 395, 1225–1242 (2009)

    Article  Google Scholar 

  11. Biswas, S., Dey, R., Mukherjee, S., Banerjee, P.C.: Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus Niger. Appl. Biochem. Biotechnol. 170, 1547–1559 (2013)

    Article  Google Scholar 

  12. Walaszczyk, E., Podgórski, W., Janczar-Smuga, M., Dymarska, E.: Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus Niger W78C in submerged batch cultures with sucrose as a carbon source. Chem. Pap. 72, 1089–1093 (2018)

    Article  Google Scholar 

  13. Kiskira, K., Lymperopoulou, T., Lourentzatos, I., Tsakanika, L.-A., Pavlopoulos, C., Papadopoulou, K., Ochsenkühn, K.-M., Tsopelas, F., Chatzitheodoridis, E., Lyberatos, G.: Bioleaching of Scandium from Bauxite Residue using Fungus Aspergillus Niger. Waste Biomass Valorization (2023). https://doi.org/10.1007/s12649-023-02116-5

    Article  Google Scholar 

  14. Walaszczyk, E., Podgórski, W., Żychiewicz, A., Olędzki, R.: Comparison of HPLC and titrimetric methods of oxalic acid determination in fermentation broth. Acta Scientiarum Polonorum: Biotechnologia 16, 1–4 (2017)

    Google Scholar 

  15. Mandal, S.K., Banerjee, P.C.: Submerged production of oxalic acid from glucose by immobilized aspergillus Niger. Process Biochem. 40, 1605–1610 (2005)

    Article  Google Scholar 

  16. Dhillon, G.S., Brar, S.K., Verma, M., Tyagi, R.D.: Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus Niger. Biochem. Eng. J. 54, 83–92 (2011)

    Article  Google Scholar 

  17. Dhillon, G.S., Brar, S.K., Verma, M., Tyagi, R.D.: Recent advances in citric acid bio-production and recovery. Food Bioproc. Tech. 4, 505–529 (2011)

    Article  Google Scholar 

  18. Sazanova, K., Osmolovskaya, N., Schiparev, S., Yakkonen, K., Kuchaeva, L., Vlasov, D.: Organic acids induce tolerance to zinc-and copper-exposed fungi under various growth conditions. Curr. Microbiol. 70, 520–527 (2015)

    Article  Google Scholar 

  19. Mores, S., de Souza Vandenberghe, L.P., Júnior, A.I.M., de Carvalho, J.C., de Mello, A.F.M., Pandey, A., Soccol, C.R.: Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. Biores. Technol. 320, 124–426 (2020)

    Google Scholar 

  20. Lujan, P., Dungan, B., Holguin, O., Sanogo, S., Puppala, N., Randall, J.: The role of carbon sources in relation to pathogenicity of Sclerotinia sclerotiorum on Valencia peanut. Can. J. Plant Sci. 99, 824–833 (2019)

    Article  Google Scholar 

  21. Wood, K.D., Freeman, B.L., Killian, M.E., Lai, W.S., Assimos, D., Knight, J., Fargue, S.: Effect of alanine supplementation on oxalate synthesis. Biochimica et Biophysica Acta (BBA)-Molecular basis of Disease. 1867, 165981 (2020).

  22. Tang, W., Zhu, Y.-Z., He, H.-Q., Qiang, S., Auld, B.A.: Effect of environmental factors and precursors on oxalic acid production, mycelial biomass and virulence of a potential bioherbicide isolate of Sclerotium Rolfsii SC64 produced in liquid culture. Biocontrol Sci. Technol. 21, 917–927 (2011)

    Article  Google Scholar 

  23. Pierson, P.E., Rhodes, L.H.: Effect of culture medium on the production of oxalic acid by Sclerotinia Trifoliorum. Mycologia 84, 467–469 (1992)

    Article  Google Scholar 

  24. Gharieb, M.M.: Nutritional effects on oxalic acid production and solubilization of gypsum by Aspergillus Niger. Mycol.Res. 104, 550–556 (2000)

    Article  Google Scholar 

  25. Amadioha, A.C.: Effect of cultural conditions on the growth and oxalic acid production in Rhizoctonia Bataticola. Mycologist 7, 118–120 (1993)

    Article  Google Scholar 

  26. Micales, J.: Induction of oxalic acid by carbohydrate and nitrogen sources in the brown-rot fungus Poria placenta. Mater. und Org. 28, 197–208 (1994)

    Google Scholar 

  27. Malekian, H., Salehi, M., Biria, D.: Investigation of platinum recovery from a spent refinery catalyst with a hybrid of oxalic acid produced by Aspergillus Niger and mineral acids. Waste Manage 85, 264–271 (2019)

    Article  Google Scholar 

  28. Lapeyrie, F., Chilvers, G.A., Bhem, C.A.: Oxalic acid synthesis by the mycorrhizal fungus PaxillusInvolutus (Batsch. Ex Fr.) Fr. New Phytol. 106, 139–146 (1987)

    Article  Google Scholar 

  29. Punja, Z.K., Jenkins, S.F.: Influence of medium composition on mycelial growth and oxalic acid production in Sclerotium Rolfsii. Mycologia 76, 947–950 (1984)

    Article  Google Scholar 

  30. Gadd, G.M.: Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999)

    Article  Google Scholar 

  31. Marciano, P., Magro, P., Favaron, F.: Sclerotinia sclerotiorum growth and oxalic acid production on selected culture media. FEMS Microbiol. Lett. 61, 57–59 (1989)

    Article  Google Scholar 

  32. Kobayashi, K., Hattori, T., Honda, Y., Kirimura, K.: Oxalic acid production by citric acid-producing Aspergillus Niger overexpressing the oxaloacetate hydrolase gene oahA. J. Ind. Microbiol. Biotechnol. 41, 749–756 (2014)

    Article  Google Scholar 

  33. Betiku, E., Emeko, H.A., Solomon, B.O.: Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon 2, e00082 (2016)

    Article  Google Scholar 

  34. Mai, H.T.N., Lee, K.M., Choi, S.S.: Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus Niger using semi solid-sate fermentation. Process Biochem. 51, 9–15 (2016)

    Article  Google Scholar 

  35. Musiał, I., Cibis, E., Rymowicz, W.: Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus Niger cultivated on biodiesel-derived waste composed of glycerol and fatty acids. Appl. Clay Sci. 52, 277–284 (2011)

    Article  Google Scholar 

  36. Emeko, H.A., Olugbogi, A.O., Betiku, E.: Appraisal of artificial neural network and response surface methodology in modeling and process variable optimization of oxalic acid production from cashew apple juice: a case of surface fermentation. BioResources 10, 2067–2082 (2015)

    Article  Google Scholar 

  37. Haq, I.-U., Ali, S., Qadeer, M.A., Iqbal, J.: Stimulatory effect of alcohols (methanol and ethanol) on citric acid productivity by a 2-deoxy D-glucose resistant culture of Aspergillus Niger GCB-47. Bioresour. Technol. 86, 227–233 (2003)

    Article  Google Scholar 

  38. Trinh, H.B., Lee, J., Srivastava, R.R., Kim, S.: Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. J. Hazard. Mater. 379, 120772 (2019). https://doi.org/10.1016/j.jhazmat.2019.120772

    Article  Google Scholar 

  39. Jeffery, G.H.: Textbook of quantitative chemical analysis. Longman (1989).

  40. Karaffa, L., Kubicek, C.P.: Aspergillus Niger citric acid accumulation: Do we understand this well working black box? Appl. Microbiol. Biotechnol. 61, 189–196 (2003)

    Article  Google Scholar 

  41. Chen, S.-Y., Wang, S.-Y.: Effects of solid content and substrate concentration on bioleaching of heavy metals from sewage sludge using Aspergillus Niger. Metals 9, 994 (2019)

    Article  Google Scholar 

  42. Rai, M., Varma, A.: Diversity and Biotechnology of Ectomycorrhizae. Springer Science & Business Media (2010)

  43. Walaszczyk, E., Gasiorek, E., Podgórski, W.: Effect of sucrose concentration on oxalic acid biosynthesis by Aspergillus Niger. Zeszyty Problemowe Postępów Nauk Rolniczych 588, (2017).

  44. Zhu, C.X., Hong, F.: Induction of an oxalate decarboxylase in the filamentous fungus Trametes Versicolor by addition of inorganic acids. Appl. Biochem. Biotechnol. 160, 655–664 (2010)

    Article  Google Scholar 

  45. Xu, T.-J., Ramanathan, T., Ting, Y.-P.: Bioleaching of incineration fly ash by Aspergillus Nigerprecipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol. Rep. 3, 8–14 (2014)

    Article  Google Scholar 

  46. Zhao, C., Yang, B., Liao, R., Hong, M., Yu, S., Wang, J., Qiu, G.: Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans. Chin. J. Chem. Eng. 41, 457–465 (2022)

    Article  Google Scholar 

  47. Kampf, G.: Efficacy of ethanol against viruses in hand disinfection. J. Hosp. Infect 98, 331–338 (2018)

    Article  Google Scholar 

  48. Reynolds, K.A., Sexton, J.D., Pivo, T., Humphrey, K., Leslie, R.A., Gerba, C.P.: Microbial transmission in an outpatient clinic and impact of an intervention with an ethanol-based disinfectant. Am. J. Infect Control 47, 128–132 (2019)

    Article  Google Scholar 

  49. Chambers, S.T., Peddie, B., Pithie, A.: Ethanol disinfection of plastic-adherent micro-organisms. J. Hosp. Infect 63, 193–196 (2006)

    Article  Google Scholar 

  50. Mohammadkazemi, F., Doosthoseini, K., Azin, M.: Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellul. Chem. Technol. 49, 455–462 (2015)

    Google Scholar 

  51. Barroso, C.B., Nahas, E.: Enhanced solubilization of iron and calcium phosphates by Aspergillus Niger by the addition of alcohols. Braz. Arch. Biol. Technol. 56, 181–189 (2013)

    Article  Google Scholar 

  52. Arvieu, J.-C., Leprince, F., Plassard, C.: Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann. For. Sci. 60, 815–821 (2003)

    Article  Google Scholar 

  53. Cleland, W.W., Johnson, M.J.: Studies on the formation of oxalic acid by Aspergillus Niger. J. Biol. Chem. 220, 595–606 (1956)

    Article  Google Scholar 

  54. Das, S., Deshavath, N.N., Goud, V.V., Dasu, V.V.: Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species. Biotechnol. Rep. 23, e00349 (2019)

    Article  Google Scholar 

  55. Rasoulnia, P., Barthen, R., Valtonen, K., Lakaniemi, A.-M.: Impacts of phosphorous source on organic acid production and heterotrophic bioleaching of rare earth elements and base metals from spent nickel-metal-hydride batteries. Waste Biomass Valorization (2021). https://doi.org/10.1007/s12649-021-01398-x

    Article  Google Scholar 

  56. Saidan, M., Brown, B., Valix, M.: Leaching of electronic waste using biometabolised acids. Chin. J. Chem. Eng. 20, 530–534 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Tarbiat Modares University under grant number IG-39701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Mousavi.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaloo-Horeh, N., Mousavi, S.M. Analyzing the Effects of Culture Media Additives on Oxalic Acid Bioproduction for Use in Metal Bioleaching. Waste Biomass Valor 15, 2687–2703 (2024). https://doi.org/10.1007/s12649-023-02381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02381-4

Keywords

Navigation