Skip to main content
Log in

Silica Nanoparticle: Eco-friendly Waste Having Potential for Seed Germination of Wheat (Triticum turgidum L. Var. Sham) Under Salt Stress Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Germination, development, and production of directly seeded agricultural products may be impacted by a variety of abiotic stresses. Silica nanoparticle seed priming has the ability to reduce the impact of external stressors. Stress brought on by salt has now become a barrier to wheat (Triticum turgidum) farming success. The goal of the current research was to clarify the effectiveness of seed priming with silica nanoparticles in reducing salt-induced stress in wheat plants. In this research, silica nanoparticle at three distinct concentrations—300, 600 and 900 ppm—was used for seed priming either alone or in combination with sodium chloride (2.3 and 4.6 ds/m). The application of silica nanoparticles considerably improved seedling development while salinity stress greatly decreased germination percent and seedling growth. Seed priming significantly increased shoot length (11.53%), root length (22.76%), seedling length (17.57%), shoot weight (35.56%), root weight (19.14%), germination stress tolerance index (91.55%), shoot length stress tolerance index (11.58%), root length stress tolerance index (22.6%), shoot weight stress tolerance index (35.54%) and root weight stress tolerance index (18.12%) under high saline treatment (4.6 ds/m). The significance of nano-silica in reducing the detrimental effects of salt stress on wheat seed growth is highlighted by the current investigation. The results showed that silica nanoparticle seed priming could enhance seedling early development under salt stress.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support this study will be shared upon reasonable request to the corresponding author.

References

  1. Beithou, N., Qandil, A., Khalid, M.B., Horvatinec, J., Ondrasek, G.: Review of agricultural-related water security in water-scarce countries: Jordan Case Study. Agronomy 12(7), 1643 (2022). https://doi.org/10.3390/agronomy12071643

    Article  Google Scholar 

  2. Al-Tabbal, J., Al‐Zboon, K.K.: Impact of boric acid and saline water irrigation on germination and seedling establishment of wheat. Irrig. Sci. 70(5), 1183–1192 (2021). https://doi.org/10.1002/ird.2603

    Article  Google Scholar 

  3. Shabbir, R., Singhal, R.K., Mishra, U.N., Chauhan, J., Javed, T., Hussain, S., Chen, P.: Combined abiotic stresses: challenges and potential for crop improvement. Agronomy 12(11), 2795 (2022). https://doi.org/10.3390/agronomy12112795

    Article  Google Scholar 

  4. Ma, Y., Dias, M.C., Freitas, H.: Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11, 591911 (2020). https://doi.org/10.3389/fpls.2020.591911

    Article  Google Scholar 

  5. Sadak, M.S., Dawood, M.G.: Biofertilizer Role in alleviating the deleterious effects of salinity on wheat growth and productivity. Gesunde Pflanzen 75, 1207–1219 (2023). https://doi.org/10.1007/s10343-022-00783-3

    Article  Google Scholar 

  6. El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar, O., Çiğ, F., Meena, R.S., Erman, M.: Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environ. Climate Plant Veg. Growth (2020). https://doi.org/10.1007/978-3-030-49732-3_20

    Article  Google Scholar 

  7. Sadak, M.S.: Physiological role of Arbuscular Mycorrhizae and vitamin B1 on productivity and physio-biochemical traits of white lupine (Lupinus termis L.) under salt stress. Gesunde Pflanzen (2023). https://doi.org/10.1007/s10343-023-00855-y

    Article  Google Scholar 

  8. Ding, Z., Kheir, A.M., Ali, O.A., Hafez, E.M., ElShamey, E.A., Zhou, Z., Seleiman, M.F.: A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manage 277, 111388 (2021). https://doi.org/10.1016/j.jenvman.2020.111388

    Article  Google Scholar 

  9. Yuvaraj, M., Bose, K.S.C., Elavarasi, P., Tawfik, E.: Soil salinity and its management. In Soil Moisture Importance, vol. 1, p. 109. IntechOpen, London, UK (2021)

  10. Malik, J.A., AlQarawi, A.A., AlZain, M.N., Dar, B.A., Habib, M.M., Ibrahim, S.N.S.: Effect of salinity and temperature on the seed germination and seedling growth of desert forage grass Lasiurus Scindicus Henr. Sustainability 14(14), 8387 (2022). https://doi.org/10.3390/su14148387

    Article  Google Scholar 

  11. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S.: Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156, 64–77 (2020). https://doi.org/10.1016/j.plaphy.2020.08.042

    Article  Google Scholar 

  12. EL Sabagh, A., Islam, M.S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Arshad, A.: Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front. Agron. (2021). https://doi.org/10.3389/fagro.2021.661932

    Article  Google Scholar 

  13. Karimi, S.M., Freund, M., Wager, B.M., Knoblauch, M., Fromm, J.M., Mueller, H., Deeken, R.: Under salt stress guard cells rewire ion transport and abscisic acid signaling. New Phytol. 231(3), 1040–1055 (2021). https://doi.org/10.1111/nph.17376

    Article  Google Scholar 

  14. Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., Prasanna, B.M.: Global maize production, consumption and trade: trends and R&D implications. Food Secur. 14(5), 1295–1319 (2022). https://doi.org/10.1007/s12571-022-01288-7

    Article  Google Scholar 

  15. Grote, U., Fasse, A., Nguyen, T.T., Erenstein, O.: Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 4, 617009 (2021). https://doi.org/10.3389/fsufs.2020.617009

    Article  Google Scholar 

  16. El-Bassiouny, H.M.S., Sadak, M.S., Mahfouz, S.A., El-Enany, M.A.M., Elewa, T.A.: Use of thiamine, pyridoxine and bio stimulant for better yield of wheat plants under water stress: growth, osmoregulations, antioxidantive defence and protein pattern. Egypt. J. Chem. 66(4), 407–424 (2023)

    Google Scholar 

  17. Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E.: Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy 9(7), 352 (2019). https://doi.org/10.3390/agronomy9070352

    Article  Google Scholar 

  18. Kizilgeci, F., Yildirim, M., Islam, M.S., Ratnasekera, D., Iqbal, M.A., Sabagh, A.E.: Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability 13(7), 3725 (2021). https://doi.org/10.3390/su13073725

    Article  Google Scholar 

  19. Reynolds, M.P., Braun, H.J.: Wheat improvement: food security in a changing climate, p. 629. Springer, Berlin (2022)

    Book  Google Scholar 

  20. Roy, S., Chowdhury, N.: Salt stress in plants and amelioration strategies: a critical review. Abiotic Stress Plants (2020). https://doi.org/10.5772/intechopen.93552

    Article  Google Scholar 

  21. Abd El-Hamid, E., Mervat, S.S.: Performance of flax cultivars in response to exogenous application of salicylic acid under salinity stress. J. Appl. Sci. Res. 8(10), 5081–5088 (2012)

    Google Scholar 

  22. Khan, S.T., Adil, S.F., Shaik, M.R., Alkhathlan, H.Z., Khan, M., Khan, M.: Engineered nanomaterials in soil: their impact on soil microbiome and plant health. Plants 11(1), 109 (2022). https://doi.org/10.3390/plants11010109

    Article  Google Scholar 

  23. Sadak, M.S., Marwa, M.R., Ahmed, M.: Physiological role of cyanobacteria and glycinebetaine on wheat plant grown under salinity stress. Int. J. Pharm. Tech. Res. 9(7), 78–92 (2016)

    Google Scholar 

  24. Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., Zhou, J.: Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14), 2558 (2019). https://doi.org/10.3390/molecules24142558

    Article  Google Scholar 

  25. Harish, V., Tewari, D., Gaur, M., Yadav, A.B., Swaroop, S., Bechelany, M., Barhoum, A.: Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 12(3), 457 (2022). https://doi.org/10.3390/nano12030457

    Article  Google Scholar 

  26. Jampílek, J., Kráľová, K.: Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol. Chem. Eng. S 22(3), 321–361 (2015). https://doi.org/10.1515/eces-2015-0018

    Article  Google Scholar 

  27. Mathur, P.G.J., Srivastava, N.: Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon (2022). https://doi.org/10.1016/j.heliyon.2022.e09908

    Article  Google Scholar 

  28. An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., Wang, Y.: Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J. Nanobiotechnol. 20(1), 1–19 (2022). https://doi.org/10.1186/s12951-021-01214-7

    Article  Google Scholar 

  29. Beig, B., Niazi, M.B.K., Sher, F., Jahan, Z., Malik, U.S., Khan, M.D., et al.: Nanotechnology-based controlled release of sustainable fertilizers. Rev. Environ. Chem. Lett. 20(4), 2709–2726 (2022). https://doi.org/10.1007/s10311-022-01409-w

    Article  Google Scholar 

  30. Saleem, H., Zaidi, S.J.: Developments in the application of nanomaterials for water treatment and their impact on the environment. Nanomaterials 10(9), 1764 (2020). https://doi.org/10.3390/nano10091764

    Article  Google Scholar 

  31. Khan, M.R., Adam, V., Rizvi, T.F., Zhang, B., Ahamad, F., Jośko, I., Mao, C.: Nanoparticle–plant interactions: two-way traffic. Small 15(37), 1901794 (2019). https://doi.org/10.1002/smll.201901794

    Article  Google Scholar 

  32. Das, A., Das, B.: Nanotechnology a potential tool to mitigate abiotic stress in crop plants. Abiotic Biotic Stress Plants (2019). https://doi.org/10.5772/intechopen.83562

    Article  Google Scholar 

  33. Noohpisheh, Z., Amiri, H., Mohammadi, A., Farhadi, S.: Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 155(2), 267-280BB (2021). https://doi.org/10.1080/11263504.2020.1739160

    Article  Google Scholar 

  34. Zulfiqar, F., Ashraf, M.: Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268 (2021)

    Article  Google Scholar 

  35. Khalid, M.F., Iqbal Khan, R., Jawaid, M.Z., Shafqat, W., Hussain, S., Ahmed, T., Alina Marc, R.: Nanoparticles: the plant saviour under abiotic stresses. Nanomaterials 12(21), 3915 (2022). https://doi.org/10.3390/nano12213915

    Article  Google Scholar 

  36. Wang, L., Ning, C., Pan, T., Cai, K.: Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: a review. Int. J. Mol. Sci. 23(4), 1947 (2022). https://doi.org/10.3390/ijms23041947

    Article  Google Scholar 

  37. Nejatzadeh, F.: Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon 7(2), e05981 (2021). https://doi.org/10.1016/j.heliyon.2021.e05981

    Article  Google Scholar 

  38. Reshma, Z., Meenal, K.: Foliar application of biosynthesised zinc nanoparticles as a strategy for ferti-fortification by improving yield, zinc content and zinc use efficiency in amaranth. Heliyon 8(10), e10912 (2022). https://doi.org/10.1016/j.heliyon.2022.e10912

    Article  Google Scholar 

  39. Bhat, J.A., Rajora, N., Raturi, G., Sharma, S., Dhiman, P., Sanand, S., et al.: Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 3(14), 4019–4028 (2021). https://doi.org/10.1039/D1NA00233C

    Article  Google Scholar 

  40. Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., Brestic, M.: Application of silicon nanoparticles in agriculture. Biotechnology 9, 1–11 (2019). https://doi.org/10.1007/s13205-019-1626-7

    Article  Google Scholar 

  41. Reed, R.C., Bradford, K.J., Khanday, I.: Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128(6), 450–459 (2022). https://doi.org/10.1038/s41437-022-00497-2

    Article  Google Scholar 

  42. Sun, Y., Xu, J., Miao, X., Lin, X., Liu, W., Ren, H.: Effects of exogenous silicon on maize seed germination and seedling growth. Sci. Rep. 11(1), 1014 (2021). https://doi.org/10.1038/s41598-020-79723-y

    Article  Google Scholar 

  43. Gupta, N., Singh, P.M., Sagar, V., Pandya, A., Chinnappa, M., Kumar, R., Bahadur, A.: Seed priming with ZnO and Fe3O4 nanoparticles alleviate the lead toxicity in Basella alba L. through reduced lead uptake and regulation of ROS. Plants 11(17), 2227 (2022). https://doi.org/10.3390/plants11172227

    Article  Google Scholar 

  44. Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L., Patil, B.S.: Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 10(1), 1–16 (2020). https://doi.org/10.1038/s41598-020-61696-7

    Article  Google Scholar 

  45. Joudeh, N., Linke, D.: Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 20(1), 262 (2022). https://doi.org/10.1186/s12951-022-01477-8’

    Article  Google Scholar 

  46. Al-mousa, E.M., Al-Zboon, K.K.: Recycling of nano silica waste from aluminum fluoride industry in cement mortar. J. Solid Waste Technol. Management 48(3), 459–464 (2022). https://doi.org/10.5276/JSWTM/2022.459

    Article  Google Scholar 

  47. Don, R.: ISTA handbook on seedling evaluation. International Seed Testing Association, Switzerland (2006)

    Google Scholar 

  48. Ta, N., Bai, S., Mu, X., Bai, L., Feng, L., Fu, M.: Morphological and seed germination behavior of three Herba Swertiae species from Hulunbuir, Inner Mongolia: temperature and substrate effects. Seeds 1(4), 221–229 (2022). https://doi.org/10.3390/seeds1040019

    Article  Google Scholar 

  49. Abdelkader, M., Voronina, L., Puchkov, M., Shcherbakova, N., Pakina, E., Zargar, M., Lyashko, M.: Seed priming with exogenous amino acids improves germination rates and enhances photosynthetic pigments of onion seedlings (Allium cepa L). Horticulturae 9(1), 80 (2023). https://doi.org/10.3390/horticulturae9010080

    Article  Google Scholar 

  50. Ruan, S., Xue, Q., Tylkowska, K.: The influence of priming on germination of rice (Oryzasativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci. Technol. 30(1), 61–67 (2002)

    Google Scholar 

  51. Esechie, H.A.: Interaction of salinity and temperature on the germination of sorghum. J. Agron. Crop. Sci. 172(3), 194–199 (1994). https://doi.org/10.1111/j.1439-037X.1994.tb00166.x

    Article  Google Scholar 

  52. George, D.W.: High temperature seed dormancy in wheat (Triticum aestivum L.) 1. Crop. Sci. 7(3), 249–253 (1967). https://doi.org/10.2135/cropsci1967.0011183X000700030024x

    Article  Google Scholar 

  53. Tarchoun, N., Saadaoui, W., Mezghani, N., Pavli, O.I., Falleh, H., Petropoulos, S.A.: The effects of salt stress on germination, seedling growth and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants 11(6), 800 (2022). https://doi.org/10.3390/plants11060800

    Article  Google Scholar 

  54. Guide, P.: SAS® 9.4 Output Delivery System (2014)

  55. Ibrahim, E.A.: Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192, 38–46 (2016). https://doi.org/10.1016/j.jplph.2015.12.011

    Article  Google Scholar 

  56. Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S., Sharma, A.: Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants 11(19), 2525 (2022). https://doi.org/10.3390/plants11192525

    Article  Google Scholar 

  57. de la Reguera, E., Veatch, J., Gedan, K., Tully, K.L.: The effects of saltwater intrusion on germination success of standard and alternative crops. Environ. Exp. Bot. 180, 104254 (2020)

    Article  Google Scholar 

  58. Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., Piernik, A.: Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy 11(3), 435 (2021). https://doi.org/10.3390/agronomy11030435

    Article  Google Scholar 

  59. Lu, Y., Liu, H., Chen, Y., Zhang, L., Kudusi, K., Song, J.: Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Front. Ecol. Evol. (2022). https://doi.org/10.3389/fevo.2022.1026095

    Article  Google Scholar 

  60. Steiner, F., Zuffo, A.M., da Silva Oliveira, C.E., Honda, G.B., Machado, J.S.: Potassium nitrate priming mitigates salt stress on wheat seedlings. Revista De Ciências Agrárias 41(4), 989–1000 (2018). https://doi.org/10.19084/RCA16135

    Article  Google Scholar 

  61. Nath, A., Molnár, M.A., Albert, K., Das, A., Bánvölgyi, S., Márki, E., Vatai, G.: Agrochemicals from nanomaterials—Synthesis, mechanisms of biochemical activities and applications. In: Comprehensive Analytical Chemistry, vol. 84, pp. 263–312. Elsevier (2019). https://doi.org/10.1016/bs.coac.2019.04.004

    Chapter  Google Scholar 

  62. Lu, M.M., De Silva, D.M., Peralta, E., Fajardo, A., Peralta, M.: Effects of nanosilica powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Philipp. e-J. Appl. Res. Dev. (PeJARD) 5, 11–22 (2015)

    Google Scholar 

  63. Alsaeedi, A.H., Elgarawany, M.M., El-Ramady, H., Alshaal, T., Al-Otaibi, A.O.A.: Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Met. Environ. Arid Land. Agric. Sci. 28, 57–68 (2019). https://doi.org/10.4197/Met.28-1.6

    Article  Google Scholar 

  64. Uçarlı, C.: Effects of salinity on seed germination and early seedling stage. Abiotic Stress Plants (2020). https://doi.org/10.5772/intechopen.93647

    Article  Google Scholar 

  65. Akter, M., Oue, H.: Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2 + ions in rice plants. Agriculture 8(10), 164 (2018). https://doi.org/10.3390/agriculture8100164

    Article  Google Scholar 

  66. Oliveira, C.E.D.S., Steiner, F., Zuffo, A.M., Zoz, T., Alves, C.Z., Aguiar, V.C.B.D.: Seed priming improves the germination and growth rate of melon seedlings under saline stress. Ciência Rural (2019). https://doi.org/10.1590/0103-8478cr20180588

    Article  Google Scholar 

  67. Saeedeh, R., Mehrnaz, H., Mansour, G.: Silicon-nanoparticle mediated changes in seed germination and vigor index of marigold (Calendula officinalis L.) compared to silicate under PEG-induced drought stress. Gesunde Pflanzen 73(4), 575–589 (2021). https://doi.org/10.1007/s10343-021-00579-x

    Article  Google Scholar 

  68. Nile, S.H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M.A., Rebezov, M., Kai, G.: Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. J. Nanobiotechnol. 20(1), 1–31 (2022). https://doi.org/10.1186/s12951-022-01423-8

    Article  Google Scholar 

  69. Bhatt, A., Daibes, L.F., Gallacher, D.J., Jarma-Orozco, A., Pompelli, M.F.: Water stress inhibits germination while maintaining embryo viability of subtropical wetland seeds: a functional approach with phylogenetic contrasts. Front. Plant Sci. (2022). https://doi.org/10.3389/fpls.2022.906771

    Article  Google Scholar 

  70. Hatami, M., Ghorbanpour, M., Salehiarjomand, H.: Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences 8(22) (2014).

  71. Hatami, M., Hadian, J., Ghorbanpour, M.: Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J. Haz. Mater. 324, 306–320 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.064

    Article  Google Scholar 

  72. Hatami, M., Hosseini, S.M., Ghorbanpour, M., Kariman, K.: Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia Mirzayanii. Chemosphere 233, 920–935 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.268

    Article  Google Scholar 

  73. Siddiqui, M.H., Al-Whaibi, M.H.: Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J. Biol. Sci. 21(1), 13–17 (2014). https://doi.org/10.1016/j.sjbs.2013.04.005

    Article  Google Scholar 

  74. Hatami, M.: Stimulatory and inhibitory effects of nanoparticulates on seed germination and seedling vigor indices. Nanosci. Plant–Soil Syst. (2017). https://doi.org/10.1007/978-3-319-46835-8_13

    Article  Google Scholar 

  75. Janmohammadi, M., Sabaghnia, N.: Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Bot. Lith. 21(1), 13–21 (2015)

    Google Scholar 

  76. Mahakham, W., Sarmah, A.K., Maensiri, S., Theerakulpisut, P.: Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 7(1), 8263 (2017). https://doi.org/10.1038/s41598-017-08669-5

    Article  Google Scholar 

  77. Nair, R., Mohamed, M.S., Gao, W., Maekawa, T., Yoshida, Y., Ajayan, P.M., Kumar, D.S.: Effect of carbon nanomaterials on the germination and growth of rice plants. J. Nanosci. Nanotechnol. 12(3), 2212–2220 (2012). https://doi.org/10.1166/jnn.2012.5775

    Article  Google Scholar 

  78. Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N.S., Prabu, P.: Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int. J. Green Nanatechnol. 3(3), 180–190 (2011). https://doi.org/10.1080/19430892.2011.628581

    Article  Google Scholar 

  79. Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P., Kannan, N.: Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol. 7(3), 70–77 (2013). https://doi.org/10.1049/iet-nbt.2012.0048

    Article  Google Scholar 

  80. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Kannan, N.: Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions. Curr. Nanosci. 8(6), 902–908 (2012). https://doi.org/10.2174/157341312803989033

    Article  Google Scholar 

  81. Abbasi Khalaki, M., Ghorbani, A., Moameri, M.: Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J. Rangeland Sci. 6(3), 221–231 (2016)

    Google Scholar 

  82. Wu, L.M., Fang, Y., Yang, H.N., Bai, L.Y.: Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli. PLoS One 14(4), e0214480 (2019). https://doi.org/10.1371/journal.pone.0214480

    Article  Google Scholar 

  83. Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., Piernik, A.: Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy 10(6), 859 (2020)

    Article  Google Scholar 

  84. Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review. Ecoto Xicol. Environ. Safety 60(3), 324–349 (2005). https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  Google Scholar 

  85. Haghighi, M., Pessarakli, M.: Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hort. 161, 111–117 (2013). https://doi.org/10.1016/j.scienta.2013.06.034

    Article  Google Scholar 

  86. Hannachi, S., Steppe, K., Eloudi, M., Mechi, L., Bahrini, I., Van Labeke, M.C.: Salt stress induced changes in photosynthesis and metabolic profiles of one tolerant (‘Bonica’) and one sensitive (‘Black beauty’) eggplant cultivars (Solanummelongena L.). Plants 11(5), 590 (2022). https://doi.org/10.3390/plants11050590

    Article  Google Scholar 

  87. Noor, M., Fan, J.B., Zhang, J.X., Zhang, C.J., Sun, S.N., Gan, L., Yan, X.B.: Bermudagrass responses and tolerance to salt stress by the physiological, molecular mechanisms and proteomic perspectives of salinity adaptation. Agronomy 13(1), 174 (2023). https://doi.org/10.3390/agronomy13010174

    Article  Google Scholar 

  88. Sabaghnia, N., Janmohammadi, M.: Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agric. Forestry/Poljoprivreda i Sumarstvo 60(3) (2014)

  89. Tantawy, A.S., Salama, Y.A.M., El-Nemr, M.A., Abdel-Mawgoud, A.M.R.: Nano silicon application improves salinity tolerance of sweet pepper plants. Int. J. ChemTech Res. 8(10), 11–17 (2015)

    Google Scholar 

  90. Kalteh, M., Alipour, Z.T., Ashraf, S., Marashi Aliabadi, M., Falah Nosratabadi, A.: Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J. Chem. Health Risks 4(3) (2018)

  91. Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawani, M., Elhawat, N., Al-Otaibi, A.: Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na + ratio under elevated na + stress. Plant Physiol. Biochem. 125, 164–171 (2018). https://doi.org/10.1016/j.plaphy.2018.02.006

    Article  Google Scholar 

  92. Feist, B., Sitko, R.: Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem. 249, 38–44 (2018). https://doi.org/10.1016/j.foodchem.2017.12.082

    Article  Google Scholar 

  93. Sen, S.K., Mandal, P.: Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. J. Central Eur. Agric. (2016). https://doi.org/10.5513/jcea.v17i3.4650

    Article  Google Scholar 

  94. Changmei, L., Chaoying, Z., Junqiang, W., Guorong, W., Mingxuan, T.: Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21(3), 168–171 (2002)

  95. Zheng, L., Hong, F., Lu, S., Liu, C.: Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104, 83–91 (2005)

    Article  Google Scholar 

  96. Zhu, J.K.: Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53(1), 247–273 (2002)

    Article  Google Scholar 

  97. Romero-Aranda, M.R., Jurado, O., Cuartero, J.: Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163(8), 847–855 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Research and Innovation Support Fund (Jordan) for its support of the scientific project “Utilization of silica nanoparticles for improving wheat plant productivity under water and saline stress condition” / Project Number: AGR/1/17/2019.

Funding

The authors would like to thank the Scientific Research and Innovation Support Fund (Jordan) for its support of the scientific project “Utilization of silica nanoparticles for improving wheat plant productivity under water and saline stress condition”/Project Number: AGR/1/17/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Al-Tabbal.

Ethics declarations

Conflict of interest

No conflicts of interest associated with this publication. As corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Tabbal, J., Al-Harahsheh, M., Al-Zou’by, J. et al. Silica Nanoparticle: Eco-friendly Waste Having Potential for Seed Germination of Wheat (Triticum turgidum L. Var. Sham) Under Salt Stress Conditions. Waste Biomass Valor 15, 2973–2987 (2024). https://doi.org/10.1007/s12649-023-02338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02338-7

Keywords

Navigation