Skip to main content

Advertisement

Log in

Silicon-nanoparticle Mediated Changes in Seed Germination and Vigor Index of Marigold (Calendula Officinalis L.) Compared to Silicate Under PEG-induced Drought Stress

Durch Silizium-Nanopartikel vermittelte Veränderungen der Samenkeimung und des Vitalitätsindex von Ringelblumen (Calendula officinalis L.) im Vergleich zu Silikat unter PEG-induziertem Trockenstress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The current study explores the potential impact of seed priming with silicon nanoparticles (SiNPs, 0, 100, 200, 500 mg/L) and silicate (Si, 0, 1, 1.5, 2 mg/L) under polyethylene glycol (PEG)-induced drought stress (0, −0.5, −1, and −1.5 MPa, respectively, control, mild, moderate and severe drought stress) on germination features and vigor index of marigold (Calendula officinalis L.). The study was performed in a factorial experiment based on completely randomized design (CRD) with four replications. Based on scanning electron microscopy (SEM) analysis, application of SiNPs at high level in seeds subjected to the severe drought stress clearly revealed the greater deposition of SiNPs on root cell walls compared to the mild or moderate drought stress. The cumulative germination in response to various concentrations of Si and SiNPs showed different germination patterns under drought stress intensities. Two-way interaction of SiNPs and drought stress significantly (P < 0.01) affected the mean germination time only, however, interaction of Si and drought stress significantly influenced germination rate (P < 0.05) and germination index (P < 0.01). The vigor index (VI) based on seedlings length (SL) and dry weight (DW) at 14 days after planting were significantly higher in Si- and SiNPs-treated seeds at 2 and 500 mg/L compared to the other treatments, respectively. In both Si and SiNPs treatments, VI-SL and VI-DW showed positive and significant correlation (r0.01 = 0.737 and r0.01 = 0.859) and (r0.01 = 0.639 and r0.01 = 0.821) with germination percentage under drought stress, respectively. These findings will open the opportunity of using Si and SiNPs as priming agents to enhance seed germination and improve seedling growth under water deficit stress.

Zusammenfassung

Die aktuelle Studie untersucht die potenziellen Auswirkungen der Saatgutvorbereitung mit Silizium-Nanopartikeln (SiNPs, 0, 100, 200, 500 mg/L) und Silikat (Si, 0, 1, 1,5, 2 mg/L) unter Polyethylenglykol (PEG)-induziertem Trockenstress (0, −0,5, −1 und −1,5 MPa, jeweils Kontrolle, leichter, mäßiger und schwerer Trockenstress) auf die Keimfähigkeit und den Vitalitätsindex von Ringelblumen (Calendula officinalis L.). Die Studie wurde in einem faktoriellen Experiment auf der Grundlage eines vollständig randomisierten Designs (CRD) mit vier Wiederholungen durchgeführt. Die rasterelektronenmikroskopische Analyse (SEM) ergab, dass die Anwendung von SiNPs in hoher Konzentration in Samen, die schwerem Trockenstress ausgesetzt waren, eindeutig eine stärkere Ablagerung von SiNPs an den Wurzelzellwänden zur Folge hatte als bei leichtem oder mäßigem Trockenstress. Die kumulative Keimung als Reaktion auf verschiedene Konzentrationen von Si und SiNPs zeigte unterschiedliche Keimungsmuster unter Trockenstressintensitäten. Die Zwei-Wege-Interaktion von SiNPs und Trockenstress wirkte sich signifikant (P < 0,01) nur auf die mittlere Keimzeit aus, die Interaktion von Si und Trockenstress beeinflusste jedoch signifikant die Keimrate (P < 0,05) und den Keimungsindex (P < 0,01). Der Vitalitätsindex (VI), der auf der Länge der Keimlinge (SL) und dem Trockengewicht (DW) 14 Tage nach der Aussaat basiert, war bei Si- und SiNPs-behandeltem Saatgut bei 2 bzw. 500 mg/L signifikant höher als bei den anderen Behandlungen. Sowohl bei der Si- als auch bei der SiNPs-Behandlung zeigten VI-SL und VI-DW eine positive und signifikante Korrelation (r0,01 = 0,737 und r0,01 = 0,859) bzw. (r0,01 = 0,639 und r0,01 = 0,821) mit dem Keimungsprozentsatz unter Trockenstress. Diese Ergebnisse eröffnen die Möglichkeit, Si und SiNPs zu verwenden, um die Keimung von Samen und das Wachstum von Keimlingen unter Wasserdefizitstress zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikari T, Kundu S, Subba Rao A (2013) Impact of siO2 and Mo nano particles on seed germination of rice. Int J Agric Food Sci Tec 4:809–816

    Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16(3):25–29

    CAS  Google Scholar 

  • Baalbaki RZ, Zurayk RA, Blelk MM, Tahouk SN (1999) Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Sci Technol 27:291–302

    Google Scholar 

  • Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulateanatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot 39:139–146

    Google Scholar 

  • Bewley JD, Blak M (1998) Seed:physiology of development and germination second edition. Plenum press, New York

    Google Scholar 

  • De Clavijo R (2005) The reproductive strategies of the hetrocarpic annual Calendula arvensis (Asteraceae). Acta Oecolog 28:1190126

    Google Scholar 

  • Edward F, Gilman T (1999) Calenula officinalis. University of Florida,

    Google Scholar 

  • Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:377–409

    Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    CAS  PubMed  Google Scholar 

  • Falleri E (1994) Effect of water stress on germination in six provenances of Pinus pinaster Ait. Seed Sci Technol 22:591–599

    Google Scholar 

  • Farboodi M, siadat H, Abedi MJ, Khavari Nejad R (2001) Effect of different NaCl and CaCl2 concentration on germination and growth of 14 wheat and one triticale genotype. J Agric Sci 9(2):85–103 (In Persian)

    Google Scholar 

  • Fenando EP, Boero C, Gallardo M, Gonzalez JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in chenopodium quinoa seeds. Bot Bull 41:27–34

    Google Scholar 

  • Fengqing G, Chao L, Chunxiang Q et al (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21(2):211–217

    Google Scholar 

  • Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Sci 179:582–589

    CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    CAS  Google Scholar 

  • Gharineh MH, Karmollachaab A (2013) Effect of silicon on physiologicalcharacteristics wheat growth under water-deficit stress inducedby PEG. Int J Agron Plant Prod 4:1543–1548

    CAS  Google Scholar 

  • Ghorbanpour M, Mohammadi H, Kariman K (2020) Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano 7:443–461. https://doi.org/10.1039/C9EN00973F

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG et al (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol plant 52:592–596. https://doi.org/10.1007/s10535-008-0118-0

    Article  CAS  Google Scholar 

  • Guo Q, Wang Y, Zhang H et al (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7:16680

    PubMed  PubMed Central  Google Scholar 

  • Hatami M (2017) Stimulatory and inhibitory effects of Nanoparticulates on seed germination and seedling vigor indices. In: Ghorbanpour M et al (ed) Nanoscience and plant-soil systems. Soil biology, vol 48. https://doi.org/10.1007/978-3-319-46835-8_13

    Chapter  Google Scholar 

  • Hatami M, Ghorbanpour M, Salehiarjomand H (2014) Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. J Biol Environ Sci 8(22):53–59

    Google Scholar 

  • Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment 571:275–291.

    CAS  Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    CAS  PubMed  Google Scholar 

  • Hatami M, Hosseini SM, Ghorbanpour M, Kariman K (2019) Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 233:920–935

    CAS  PubMed  Google Scholar 

  • Hus JL, Sung JM (1997) Antioxidant role of glutatnione associated with accelerated agina and hydration of triploid Warermelon seeds. Physiol Plantarum 100:967–974

    Google Scholar 

  • Hussain S, Mumtaz M, Manzoor S, Shuxian L, Ahmed I, Skalicky M, Brestic M, Rastogi A et al (2021) Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem 159:43–52. https://doi.org/10.1016/j.plaphy.2020.11.053

    Article  CAS  PubMed  Google Scholar 

  • ISTA (2009) International rules for seed testing. International Seed Testing Association,

    Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2011) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 14:1–8

    Google Scholar 

  • Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Bot Lith 21(1):13–21

    Google Scholar 

  • Joly R, Forcella F, Peterson D, Eklund J (2013) Planting depth for oilseed calendula. Ind Crops Prod 42:133–136

    Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P et al (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. Iet Nanobiotech 7:70–77

    CAS  Google Scholar 

  • Kaya DM, Okçu G, Atak M, Çikili Y, Kolsarici O (2006) Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    CAS  Google Scholar 

  • Khalaki M, Ghorbani A, Moameri M (2016) Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J Rangeland Sci 6(3):221–231

    Google Scholar 

  • Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L (2021) Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol Environ Saf 222:112510. https://doi.org/10.1016/j.ecoenv.2021.112510

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232. https://doi.org/10.1016/j.plaphy.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033

    CAS  PubMed  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Bramm J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsisthaliana. Environ Toxicol Chem 29:669–675

    CAS  PubMed  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon LY, Lee IJ (2010) Effects of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Syst 80:333–430

    Google Scholar 

  • Ling Y, Sun W, Zhu Y, Christite P (2007) Mechanismsms of silhcon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollut 147(422):428

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Plant Sci 11:392–397

    CAS  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S et al (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263. https://doi.org/10.1038/s41598-017-08669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoudi P, Gzancheyan E, Jajermi E, Bozorgmehr E (2008) Effect of seed priming on germination and seedling strength in three species of permanent grass under salinity stress. J Agric Sci Technol Specialty Hortic 22(1):57–67 (In Persian)

    Google Scholar 

  • Merwad AR, Desoky ES, Rady MM (2018) Response of water deficit stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic 228:132–144

    CAS  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol6000. Plant Physiol 51:914–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239. https://doi.org/10.1021/es202995d

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolables for plants. J Fluoresc 21:2057–2068

    CAS  PubMed  Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33. https://doi.org/10.1016/j.plaphy.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosys Environ 134:24–28

    CAS  Google Scholar 

  • Pipinis E, Stampoulidis A, Milios E et al (2020) Effects of seed moisture content, stratification and sowing date on the germination of Corylus avellana seeds. J For Res 31:743–749

    CAS  Google Scholar 

  • Pirasteh Anosheh H, Sadeghi H, Emam Y (2011) Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol 14(4):289–295

    Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Google Scholar 

  • Rajjou L et al (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    CAS  PubMed  Google Scholar 

  • Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114

    CAS  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9:90

    PubMed  PubMed Central  Google Scholar 

  • Rawashdeh RY, Harb AM, AlHasan AM (2020) Biological interaction levels of zinc oxide nanoparticles; lettuce seeds as case study. Heliyon 6(5):e03983. https://doi.org/10.1016/j.heliyon.2020.e03983

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezai A, Balouchi H, Movahhedi Dehnavi M, Adhami I (2018) Effect of different priming on seed germination indices and enzyme of sorghum (sorghum bicolor L.) SOR834 genotype under cadmium chloride and nitrate toxicity. J Plant Prod 41:69–82

    Google Scholar 

  • Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. Int J Nanobiotechnology Pharm 12(1):50. https://doi.org/10.1186/s12951-014-0050-0058

    Article  Google Scholar 

  • Sedighi Dehkordi F, Nabipour M, Meskarbashi M (2013) Effect of different seed priming methods on germination of chicory’s ecotypes (Cichorium intybus L.). Journal of Plant Productions 36:95–107

    Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects onphotosynthesis and antioxidant parameters of soybean seedlings underdrought and ultraviolet‑B radiation. J Plant Physiol 167:1248–1252

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  • Silva AJ, Nascimento CWA, Gouveia-Neto AS (2017) Assessment of cadmiumtoxicities in potted garlic plants. Acta Physiol Plant 38:211

    Google Scholar 

  • Stephen GW, Li H, Jennifer H, Da-Ren C, In-Chul K, JYinjie T (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Petroleum Environ Biotechnol 3:4

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012a) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14(12):1294

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012b) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Google Scholar 

  • Szőllősi R, Molnár Á, Kondak S, Kolbert Z (2020) Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants 9(12):1745

    PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV‑B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  • Vaculik M, Lux A, Luxova M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    CAS  Google Scholar 

  • Vashisth A, Nagarajan S (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol 167:149–156

    CAS  PubMed  Google Scholar 

  • Yi F, Wang Z, Baskin CC, Baskin JM, Ye R, Sun H, Zhang Y, Ye X, Liu G, Yang X et al (2019) Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for e_ect of climate change on community structure. Ecol Evol 9:2149–2159

    PubMed  PubMed Central  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Inter J Green Nanotechn 3:180–190

    CAS  Google Scholar 

  • Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving hotosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9(11):733. https://doi.org/10.3390/agronomy9110733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Arak University, Iran (Project ID: 9532/5327). The authors are highly thankful to Arak University for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnaz Hatami.

Ethics declarations

Conflict of interest

S. Rahimi, M. Hatami and M. Ghorbanpour declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Hatami, M. & Ghorbanpour, M. Silicon-nanoparticle Mediated Changes in Seed Germination and Vigor Index of Marigold (Calendula Officinalis L.) Compared to Silicate Under PEG-induced Drought Stress. Gesunde Pflanzen 73, 575–589 (2021). https://doi.org/10.1007/s10343-021-00579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00579-x

Keywords

Schlüsselwörter

Navigation