Skip to main content

Advertisement

Log in

Characterization of Hexane-Defatted Brassica carinata Oilseed Meals to Explore Their Potential for Valorization Towards a Sustainable Circular Bioeconomy

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A biofuel (bio-jet fuel) plant’s output streams, such as defatted oilseed meals, may be utilized as an effective resource utilization approach, to produce a wide range of co-products and establish a carinata-based circular bioeconomy. In the present study, four hexane-defatted oilseed meals of Brassica carinata cultivars were investigated. The proximate analysis, ultimate analysis, inductively coupled plasma optical emission spectroscopic analysis, bomb calorimetric digestion and determination of energy densities were used to characterize the samples. The proximate analysis of the meals revealed the following values: total moisture content (7.69−9.23%), crude fat (9.70−16.90%), crude protein (41.21−45.50%), crude fiber (21.32−28.35%), total ash (4.22−4.60%), total carbohydrate (1.00−14.69%), volatile matter (81.58−83.68%), and fixed carbon content (11.99−13.94%). The ultimate compositions were determined to be carbon (50.5−52.7%), hydrogen (7.35−7.70%), nitrogen (5.65−6.85%), sulfur (1.13−1.38%), and oxygen (31.4−33.45%). Furthermore, the hydrogen-to-carbon, oxygen-to-carbon, and carbon-to-nitrogen atomic ratios for the meals were found to be 1.73−1.77, 0.45−0.49 and 8.60−10.58, respectively. The higher and lower heating values were observed to vary from 20.15 to 23.75 MJ/kg and 19.65 to 22.10 MJ/kg, respectively. The macronutrient composition of samples was relatively higher in ascending order of magnesium, calcium, phosphorous and potassium; however, the concentrations of the micronutrients (aluminum, iron and zinc) were slightly lower. According to the findings of the present investigation, the meals have distinctive qualities making them preferable alternatives compared to other oilseed meals. The meals can be utilized for a variety of industrial applications, including protein supplements in the feed industry, alternative organic fertilizers (organic amendment), and biofumigation (soil amendment). They are also potential alternative feedstocks for thermochemical conversion processes used to produce a range of intermediate products, one of which is bio-oil, which can be applied to produce advanced fuels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and materials will be made available upon request to the corresponding author.

References

  1. Seepaul, R., Kumar, S., Iboyi, J.E., Bashyal, M., Stansly, T.L., Bennett, R., Boote, K.J., Mulvaney, M.J., Small, I.M., George, S., Wright, D.L.: Brassica carinata: biology and agronomy as a biofuel crop. GCB Bioenergy 13(4), 582–599 (2021)

    Article  CAS  Google Scholar 

  2. Alam, A., Masum, M.F.H., Dwivedi, P.: Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United States. GCB Bioenergy 13(11), 1800–1813 (2021)

    Article  CAS  Google Scholar 

  3. Wang, M., Amgad, E., Thathiana, B.P., Andrew, B., Hao, C., Qiang, D., Robert, H.T., Cory, K.J., Hoyoung, K., Dong-Yeon, L., Uisung, L., Zifeng, L., Longwen, O.: Summary of Expansions and Updates in GREET® 2018. Argonne National Lab (ANL), Argonne (2018)

    Book  Google Scholar 

  4. Basili, M., Rossi, M.A.: Brassica carinata-derived biodiesel production: economics, sustainability and policies. The Italian case. J. Clean. Prod. 191, 40–47 (2018)

    Article  Google Scholar 

  5. Lal, B., Rana, K.S., Rana, D.S., Shivay, Y.S., Sharma, D.K., Meena, B.P., Gautam, P.: Biomass, yield, quality and moisture use of Brassica carinata as influenced by intercropping with chickpea under semiarid tropics. J. Saudi Soc. Agric. Sci. 18(1), 61–71 (2019)

    Google Scholar 

  6. Zegada-Lizarazu, W., Monti, A.: Energy crops in rotation. A review. Biomass Bioenergy 35(1), 12–25 (2011)

    Article  Google Scholar 

  7. Kumar, S., Seepaul, R., Mulvaney, M.J., Colvin, B., George, S., Marois, J.J., Bennett, R., Leon, R., Wright, D.L., Small, I.M.: Brassica carinata genotypes demonstrate potential as a winter biofuel crop in South East United States. Ind. Crops Prod. 150, 112353 (2020)

    Article  CAS  Google Scholar 

  8. George, S., Seepaul, R., Geller, D., Dwivedi, P., DiLorenzo, N., Altman, R., Coppola, E., Miller, S.A., Bennett, R., Johnston, G., Streit, L., Csonka, S., Field, J., Marois, J., Wright, D., Small, I.M., Philippidis, G.P.: A regional inter-disciplinary partnership focusing on the development of a carinata-centered bioeconomy. GCB Bioenergy 13(7), 1018–1029 (2021)

    Article  CAS  Google Scholar 

  9. Redda, Z.T., Laß-Seyoum, A., Yimam, A., Barz, M., Jabasingh, S.A.: Solvent extraction and characterization of Brassica carinata oils as promising alternative feedstock for bio-jet fuel production. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03343-x

    Article  Google Scholar 

  10. Yadav, S., Teng, P.Y., Choi, J., Singh, A.K., Kim, W.K.: Nutrient profile and effects of carinata meal as alternative feed ingredient on broiler performance, tight junction gene expression and intestinal morphology. Poult. Sci. 101(2), 101411 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. Ban, Y., Prates, L.L., Yu, P.: Biodegradation characteristics and nutrient availability of newly developed carinata seeds in comparison with canola seeds in dairy cattle. Anim. Feed Sci. Technol. 240, 88–101 (2018)

    Article  CAS  Google Scholar 

  12. Schulmeister, T.M., Moreno, M.R., Silva, G.M., Ascolani, M.G., Ciriaco, F.M., Henry, D.D., Lamb, G.C., Dubeux, J.C.B., Jr., Dilorenzo, N.: Evaluation of Brassica carinata meal as a protein supplement for growing beef heifers. J. Anim. Sci. 97(10), 4334–4340 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iboyi, J.E., Mulvaney, M.J., Balkcom, K.S., Seepaul, R., Bashyal, M., Perondi, D., Leon, R.G., Devkota, P., Small, I.M., George, S., Wright, D.L.: Tillage system and seeding rate effects on the performance of Brassica carinata. GCB Bioenergy 13(4), 600–617 (2021)

    Article  CAS  Google Scholar 

  14. Taylor, D.C., Falk, K.C., Palmer, C.D., Hammerlindl, J., Babic, V., Mietkiewska, E., Jadhav, A., Marillia, E.-F., Francis, T., Hoffman, T., Giblin, E.M., Katavic, V., Keller, W.A.: Brassica carinata–a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod. Bioref. 4(5), 538–561 (2010)

    Article  CAS  Google Scholar 

  15. Dwivedi, P.: Sustainable aviation fuel production from Brassica carinata in the Southern United States. Glob. Change Biol. Bioenergy 13(12), 1854–1858 (2021)

    Article  Google Scholar 

  16. Sharafi, Y., Majidi, M.M., Goli, S.A.H., Rashidi, F.: Oil content and fatty acids composition in Brassica species. Int. J. Food Prop. 18(10), 2145–2154 (2015)

    Article  CAS  Google Scholar 

  17. Serrano-Pérez, P., De Santiago, A., del Rodríguez-Molina, M.C.: Biofumigation with pellets of defatted seed meal of Brassica carinata: factors affecting performance against Phytophthora nicotianae in pepper crops. Front. Sustain. Food Syst. 5, 664531 (2021)

    Article  Google Scholar 

  18. Bittner, A., Tyner, W.E., Zhao, X.: Field to flight: a techno-economic analysis of the corn stover to aviation biofuels supply chain. Biofuels Bioprod. Bioref. 9(2), 201–210 (2015)

    Article  CAS  Google Scholar 

  19. Ancuța, P., Sonia, A.: Oil press-cakes and meals valorization through circular economy approaches: a review. Appl. Sci. 10(21), 7432 (2020)

    Article  Google Scholar 

  20. AOAC: Association of official analytical chemists, method 923.03. Ash of flour (Direct Method). In: Official methods of analysis, 18th edn. AOAC International Publisher, Gaithersburg (2005)

    Google Scholar 

  21. Egouletey, M., Aworh, O.C.: Production and physicochemical properties of Tempeh fortified maize based weaning food. Niger. Food J. 70, 92–102 (1991)

    Google Scholar 

  22. Jayaraman, P., NesaPriya, S., Parameshwari, S., Shyamala, S., Jawahar, N., Sekar, H.: Occurrence of storage fungi in jatropha (Jatropha curcas L.) seeds. Afr. J. Microbiol. Res. 5(5), 475–480 (2011)

    Google Scholar 

  23. Aboulfadl, M., El-Badry, N., Ammar, M.: Nutritional and chemical evaluation for two different varieties of Mustard seeds. World Appl. Sci. J. 15(9), 1225–1233 (2011)

    Google Scholar 

  24. Hossain, D., Ahmed, K.U., Chowdhury, F.N., Roksana, K.M., Islam, S., Barman, A.: Experimental study on grain weight, moisture, ash, carbohydrates, protein, oil, total energy and minerals content of different varieties of Rapeseed and Mustard (Brassica spp.). Int. J. Sci. Res. Publ. 5(12), 394–400 (2015)

    Google Scholar 

  25. Fu, J., Summers, S., Morgan, T.J., Turn, S.Q., Kusch, W.: Fuel properties of pongamia (Milletia pinnata) seeds and pods grown in Hawaii. ACS Omega 6(13), 9222–9233 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernard, J.K.: Oilseed and oilseed meals. Encycl. Dairy Sci. 1, 614–619 (2022)

    Article  Google Scholar 

  27. Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.C., Fine, F.: Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 95(5), 1105–1114 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. de Castro, A.M., dos Reis Castilho, L., Freire, D.M.G.: Characterization of babassu, canola, castor seed and sunflower residual cakes for use as raw materials for fermentation processes. Ind. Crops Prod. 83, 140–148 (2016)

    Article  Google Scholar 

  29. Mulvaney, M.J., Leon, R.G., Seepaul, R., Wright, D.L., Hoffman, T.L.: Brassica carinata seeding rate and row spacing effects on morphology, yield and oil. Agron. J. 111(2), 528–535 (2019)

    Article  CAS  Google Scholar 

  30. Cheng, H., Liu, X., Xiao, Q., Zhang, F., Liu, N., Tang, L., Wang, J., Ma, X., Tan, B., Chen, J., Jiang, X.: Rapeseed meal and its application in pig diet: a review. Agriculture 12(6), 849 (2022)

    Article  CAS  Google Scholar 

  31. Mejicanos, G., Sanjayan, N., Kim, I.H., Nyachoti, C.M.: Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol. 58(1), 1–13 (2016)

    Article  Google Scholar 

  32. Şensöz, S., Angin, D., Yorgun, S., Koçkar, Ö.M.: Biooil production from an oilseed crop: fixed-bed pyrolysis of rapeseed (Brassica napus L.). Energy Sources 22(10), 891–899 (2000)

    Article  Google Scholar 

  33. Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Lasode, O.A., Malathi, M., Paswan, D.: Essential basics on biomass torrefaction, densification and utilization. Int. J. Energy Res. 45(2), 1375–1395 (2021)

    Article  CAS  Google Scholar 

  34. Adeleke, A.A., Odusote, J.K., Paswan, D., Lasode, O.A., Malathi, M.: Influence of torrefaction on lignocellulosic woody biomass of Nigerian origin. J. Chem. Technol. Metall. 54, 274–285 (2019)

    Google Scholar 

  35. Mehmood, S., Reddy, B.V., Rosen, M.A.: Energy analysis of a biomass co-firing based pulverized coal power generation system. Sustainability 4(4), 462–490 (2012)

    Article  Google Scholar 

  36. Maroto-Valer, M.M., Love, G.D., Snape, C.E.: Relationship between carbon aromaticities and HC ratios for bituminous coals. Fuel 73(12), 1926–1928 (1994)

    Article  CAS  Google Scholar 

  37. Basu, P.: Economic issues of biomass energy conversion. Energy Convers. Manag 75, 25–43 (2013)

    Google Scholar 

  38. Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., Huhnke, R.L.: Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6(8), 3972–3986 (2013)

    Article  CAS  Google Scholar 

  39. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. Tsarpali, M., Martin, J., Kuhn, J., Philippidis, G.P.: Valorization of Brassica carinata biomass through conversion to hydrolysate and hydrochar. Biomass Convers. Bioref. 2022, 1–12 (2022)

    Google Scholar 

  41. Kumar, J.V., Pratt, B.C.: Determination of calorific values of some renewable biofuels. Thermochim. Acta 279, 111–120 (1996)

    Article  CAS  Google Scholar 

  42. Pari, L., Suardi, A., Longo, L., Carnevale, M., Gallucci, F.: Jatropha curcas, L. pruning residues for energy: characteristics of an untapped by-product. Energies 11(7), 1622 (2018)

    Article  Google Scholar 

  43. Demirbaş, A.: Calculation of higher heating values of biomass fuels. Fuel 76(5), 431–434 (1997)

    Article  Google Scholar 

  44. Keneni, Y.G., Bahiru, L.A., Marchetti, J.M.: Effects of different extraction solvents on oil extracted from jatropha seeds and the potential of seed residues as a heat provider. BioEnergy Res. 14(4), 1207–1222 (2021)

    Article  CAS  Google Scholar 

  45. Paula, E.M., Galoro, L., Lucia, V., Brandao, N., Dai, X., Faciola, A.P.: Feeding Canola, Camelina and Carinata meals to ruminants. Animals 9(10), 1–19 (2019)

    Article  Google Scholar 

  46. Brandao, A.S., Goncalves, A., Santos, J.M.: Circular bioeconomy strategies: from scientific research to commercially viable products. J. Clean. Prod. 295, 126407 (2021)

    Article  Google Scholar 

  47. Rakow, G., Getinet, A.: Brassica carinata an oilseed crop for Canada. Acta Hortic (1998). https://doi.org/10.17660/ActaHortic.1998.459.50

    Article  Google Scholar 

  48. Negussie, A., Becker, H.C.: Variation and inheritance of erucic acid content in Brassica carinata germplasm collections from Ethiopia. Plant Breed. 120(4), 331–335 (2001)

    Article  Google Scholar 

  49. Rahman, M., Khatun, A., Liu, L., Barkla, B.J.: Brassicaceae mustards: traditional and agronomic uses in Australia and New Zealand. Molecules 23(1), 1–18 (2018)

    Article  Google Scholar 

  50. Chen, S., Andreasson, E.: Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39(9), 743–758 (2001)

    Article  CAS  Google Scholar 

  51. Rosenthal, E.J., Clapper, J.A., Perry, G.A., Brake, D.W.: Effects of solvent- or mechanically extracted Brassica carinata meal on performance of cows. J. Anim. Sci. 95(4), 311 (2017)

    Article  Google Scholar 

  52. Tripathi, M.K., Mishra, A.S.: Glucosinolates in animal nutrition: a review. Anim. Feed Sci. Technol. 132(1–2), 1–27 (2007)

    Article  CAS  Google Scholar 

  53. Schulmeister, T.M., Ruiz-Moreno, M., Silva, G.M., Garcia-Ascolani, M., Ciriaco, F.M., Henry, D.D., Lamb, G.C., Dubeux, J.C.B., DiLorenzo, N.: Evaluation of Brassica carinata meal on ruminant metabolism and apparent total tract digestibility of nutrients in beef steers. J. Anim. Sci. 97(3), 1325–1334 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Colombini, S., Broderick, G.A., Galasso, I., Martinelli, T., Rapetti, L., Russo, R., Reggiani, R.: Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. J. Sci. Food Agric. 94(4), 736–743 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Pedroche, J., Yust, M.M., Lqari, H., Girón-Calle, J., Alaiz, M., Vioque, J., Millán, F.: Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem. 88(3), 337–346 (2004)

    Article  CAS  Google Scholar 

  56. Akbari, A., Wu, J.: An integrated method of isolating napin and cruciferin from defatted canola meal. LWT-Food Sci. Technol. 64(1), 308–315 (2015)

    Article  CAS  Google Scholar 

  57. Wu, J., Muir, A.D.: Comparative structural, emulsifying and biological properties of 2 major canola proteins, cruciferin and napin. J. Food Sci. 73(3), 210–216 (2008)

    Article  Google Scholar 

  58. Akbari, A., Lavasanifar, A., Wu, J.: Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater. 64, 249–258 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. Monaci, E., Casucci, C., De Bernardi, A., Marini, E., Landi, L., Toscano, G., Romanazzi, G., Vischetti, C.: Brassica carinata seed meal as soil amendment and potential biofumigant. Crops 2(3), 233–246 (2022)

    Article  Google Scholar 

  60. Popa, M.E., Mitelut, A.C., Popa, E.E., Stan, A., Popa, V.I.: Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 84, 15–18 (2019)

    Article  CAS  Google Scholar 

  61. Meemken, E.-M., Qaim, M.: Organic agriculture, food security and the environment. Annu. Rev. Resour. Econ. 10, 39–63 (2018)

    Article  Google Scholar 

  62. Alvarez, R.: A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 21(1), 38–52 (2005)

    Article  Google Scholar 

  63. Celestina, C., Hunt, J.R., Sale, P.W.G., Franks, A.E.: Attribution of crop yield responses to application of organic amendments: a critical review. Soil Tillage Res. 186, 135–145 (2019)

    Article  Google Scholar 

  64. Röös, E., Mie, A., Wivstad, M., Salomon, E., Johansson, B., Gunnarsson, S., Wallenbeck, A., Hoffmann, R., Nilsson, U., Sundberg, C., Watson, C.A.: Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 38(2), 1–21 (2018)

    Article  Google Scholar 

  65. Khan, A., Jan, M.T., Afzal, M., Muhammad, I., Amanullah, J., Shah, Z.: An integrated approach using organic amendments under a range of tillage practices to improve wheat productivity in a cereal based cropping system. Int. J. Agric. Biol. 17(3), 467–474 (2015)

    Article  CAS  Google Scholar 

  66. Duhan, J.S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., Duhan, S.: Nanotechnology: the new perspective in precision agriculture. Biotechnol. Reports 15, 11–23 (2017)

    Article  Google Scholar 

  67. Mazzoncini, M., Antichi, D., Tavarini, S., Silvestri, N., Lazzeri, L., D’Avino, L.: Effect of defatted oilseed meals applied as organic fertilizers on vegetable crop production and environmental impact. Ind. Crops Prod. 75, 54–64 (2015)

    Article  CAS  Google Scholar 

  68. Gimsing, A.L., Kirkegaard, J.A.: Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem. Rev. 8(1), 299–310 (2009)

    Article  CAS  Google Scholar 

  69. Mazzola, M., Manici, L.M.: Apple replant disease: role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. Biagini, E., Barontini, F., Tognotti, L.: Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind. Eng. Chem. Res. 45(13), 4486–4493 (2006)

    Article  CAS  Google Scholar 

  71. Licata, M., La Bella, S., Leto, C., Bonsangue, G., Gennaro, M.C., Tuttolomondo, T.: Agronomic evaluation of ethiopian mustard (Brassica carinata A. Braun) germplasm and physical-energy characterization of crop residues in a semi-arid area of sicily (Italy). Chem. Eng. Trans. 58, 535–540 (2017)

    Google Scholar 

  72. Han, Y., Gholizadeh, M., Tran, C.C., Kaliaguine, S., Li, C.Z., Olarte, M., Garcia-Perez, M.: Hydrotreatment of pyrolysis bio-oil: a review. Fuel Process. Technol. 195, 106140 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the Holetta Agricultural Research Center for providing us with the cultivated Brassica carinata seed samples. We sincerely thank Prof. Ange Nzihou, the Editor-in-Chief, for his strong efforts during this peer review process. In addition, we are very grateful to appreciate the anonymous reviewers for their time, efforts, comments, and recommendations.

Funding

The author, Zinnabu Tassew Redda, would like to extend his heartfelt gratitude to the German Academic Exchange Service (DAAD) for funding the scholarship, the University of Applied Sciences (HTW) Berlin (technical assistance), and Addis Ababa University for its financial and technical support (Grant Number: Ph.D. RG-GSR/1466/10).

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization, project management, resource acquisition, methodology and original manuscript writing were undertaken by ZTR. Investigation and supervision of activities were performed by authors ALS and AY. Data curation was performed by MB. Data review, formal analysis, writing, and editing of the manuscript were performed by ZTR and SAJ.

Corresponding author

Correspondence to S. Anuradha Jabasingh.

Ethics declarations

Competing interests

The authors declare no conflicting interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redda, Z.T., Laß-Seyoum, A., Yimam, A. et al. Characterization of Hexane-Defatted Brassica carinata Oilseed Meals to Explore Their Potential for Valorization Towards a Sustainable Circular Bioeconomy. Waste Biomass Valor 15, 1185–1197 (2024). https://doi.org/10.1007/s12649-023-02248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02248-8

Keywords

Navigation