Skip to main content
Log in

Rapeseed and sunflower meal: a review on biotechnology status and challenges

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rapeseed and sunflower are two of the world’s major oilseeds. Rapeseed and sunflower meal (RSM and SFM), the by-products of oil extraction, are produced in large quantities. They are mainly composed of proteins, lignocellulosic fibres and minerals. They were initially used as a protein complement in animal feed rations and sometimes as fertilizer or as combustible source. More recently, new alternatives to these traditional uses have been developed that draw on the structure and physicochemical properties of RSM and SFM, which are plentiful sources of nitrogen and carbon nutrients. This feature, together with their cheapness and ready availability, supports the cultivation of various microorganisms in both submerged cultures and solid-state fermentation. Recent studies have thus emphasized the potential utilisation of RSM and SFM in fermentative processes, including saccharification and production of enzymes, antibiotics, antioxidants and other bio-products, opening new challenging perspectives in white biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aya M, Nao T, Masahiro M, Hiroyuki T (2010) Method for producing high protein low glucosinolate rapeseed meal. International Patent JP2010011760 (A)

  • Ballester D, Rodrigo R, Nakouzi J, Chichester CO, Yáñez E, Mönckeberg F (1970) Rapeseed meal: chemical composition and biological quality of the protein. J Sci Food Agric 21:140–142

    Article  CAS  Google Scholar 

  • Bautista J, Parrado J, Machado A (1990) Composition and fractionation of sunflower meal: use of the lignocellulosic fraction as substrate in solid-state fermentation. Biol Wastes 32:225–233

    Article  CAS  Google Scholar 

  • Bell JM (1984) Nutrients and toxicants in rapeseed meal: a review. J Anim Sci 58:996–1010

    CAS  Google Scholar 

  • Bell JM, Jeffers HF (1976) Variability in the chemical composition of rapeseed meal. Can J Anim Sci 56:269–273

    Article  CAS  Google Scholar 

  • Blair R, Scougall RK (1975) Chemical composition, nutritive values of rapeseed meals. Feedstuffs 10:26–27

    Google Scholar 

  • Boni R, Assogna A, Grillo F, Robertiello A, Petrucci F, Giacomozzi E, Patricelli A (1987) Method for preparing protein hydrolysates soluble in an acid environment, and the hydrolysates obtained. European Patent EP0 271 964 A2

  • Briones R, Serrano L, Labidi J (2011) Valorisation of some lignocellulosic agro-industrial residues to obtain biopolyols. J Chem Technol Biotechnol 87:244–249

    Article  Google Scholar 

  • Cai T, Chang K-C, Lunde H (1996) Physicochemical properties and yields of sunflower protein enzymatic hydrolysates as affected by enzyme and defatted sunflower meal. J Agric Food Chem 44:3500–3506

    Google Scholar 

  • Chen K, Zhang H, Miao Y, Wei P, Chen J (2011) Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb Technol 48:339–344

    Article  CAS  Google Scholar 

  • Dominguez H, Núñez MJ, Lema JM (1995) Aqueous processing of sunflower kernels with enzymatic technology. Food Chem 53:427–434

    Article  CAS  Google Scholar 

  • Ebune A, Al-Asheh S, Duvnjak Z (1995a) Production of phytase during solid-state fermentation using Aspergillus ficuum NRRL 3135 in canola meal. Bioresour Technol 53:7–12

    Article  CAS  Google Scholar 

  • Ebune A, Al-Asheh S, Duvnjak Z (1995b) Effects of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid-state fermentation. Bioresour Technol 54:241–247

    Article  CAS  Google Scholar 

  • Egües I, González Alriols M, Herseczki Z, Marton G, Labidi J (2010) Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process. J Ind Eng Chem 16:293–298

    Article  Google Scholar 

  • El-Batal AI, Abdel Karem H (2001) Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res Int 34:715–720

    Article  CAS  Google Scholar 

  • Erden E, Ucar MC, Kaymaz Y, Kasikara N, Pazarlioglu NK (2009) New and different lignocellulosic materials from Turkey for laccase and manganese peroxidase production by Trametes versicolor. Eng Life Sci 9:60–65

    Article  CAS  Google Scholar 

  • Eriksson G, Hedman H, Boström D, Pettersson E, Backman R, Öhman M (2009) Combustion characterization of rapeseed meal and possible combustion applications. Energy Fuel 23:3930–3939

    Article  CAS  Google Scholar 

  • Falkoski DL, Guimarães VM, Nicolau de Amleida M, Alfenas AC, Colodette JL, Tavares de Rezende S (2012) Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl Biochem Biotechnol 166:1586–1603

    Article  CAS  Google Scholar 

  • Fang ZF, Peng J, Tang TJ, Liu ZL, Dai J, Jin Z (2007a) Xylanase supplementation improved digestibility and performance of growing pigs fed Chinese double-low rapeseed meal inclusion diets: in vitro and in vivo studies. Asian-Aust J Anim Sci 20:1721–1728

    CAS  Google Scholar 

  • Fang ZF, Peng J, Liu ZL, Liu YG (2007b) Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal. J Anim Physiol Anim Nutr 91:361–368

    Article  CAS  Google Scholar 

  • Federici F, Montedoro G, Servili M, Petruccioli M (1988) Pectic enzyme production by Cryptococcus albidus var. albidus on olive vegetation waters enriched with sunflower calathide meal. Biol Wastes 25:291–301

    Article  CAS  Google Scholar 

  • Gattinger LD, Duvnjak Z, Khan AW (1990) The use of canola meal as a substrate for xylanase production by Trichoderma reesei. Appl Microbiol Biotechnol 33:21–25

    Article  CAS  Google Scholar 

  • Geneau-Sbartaï C, Leyris J, Silvestre F, Rigal L (2008) Sunflower cake as a natural composite: composition and plastic properties. J Agric Food Chem 56:11198–11208

    Article  Google Scholar 

  • Gu J (2007) Method for preparing rapeseed meal peptide using biological fermentation method. International Patent CN101086005 (A)

  • Gu X, Yu W, Ma G, Cheng H (2011) Method for reducing fibre content of rapeseed meal. International Patent CN101946854 (A)

  • Haq I, Ashraf H, Iqbal J, Qadeer MA (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresour Technol 87:57–61

    Article  Google Scholar 

  • Hisao Y, Tetsuo H (1986) Treatment of rapeseed cake. International Patent JP61166385 (A)

  • Jacobs A, Botha A, Reddy JK, Van Zyl WH (2010) Sunflower press cake as a substrate for eicosapentaenoic acid production by representatives of the genus Mortierella. BioResources 5:1232–1243

    CAS  Google Scholar 

  • Jadhav M, Kagalkar A, Jadhav S, Govindwar S (2011) Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol 113:1347–1356

    Article  CAS  Google Scholar 

  • Kohlmann KL, Sarikaya A, Westgate P A, Weil J, Velayudhan A, Hendrickson RL, Ladish MR (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. In: Enzymatic degradation of insoluble carbohydrates Chap 15. ACS Symposium Series. pp. 237–255

  • Kohlmann KL, Westgate PA, Weil J, Sarikaya A, Brewer MA, Hendrickson RL, Ladish MR (1996) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system. Adv Spacc Res 18:251–265

    Article  CAS  Google Scholar 

  • Kota KP, Sridhar P (1999) Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem 34:325–328

    Article  CAS  Google Scholar 

  • Liu D (2006) Direct enzyme hydrolysis method for preparing rapeseed peptide using rapeseed cake. International Patent CN1884572 (A)

  • Lomascolo A, Record E, Herpoël-Gimbert I, Delattre M, Robert JL, Georis J, Dauvrin T, Sigoillot JC, Asther M (2003) Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbio 94:618–624

    Article  CAS  Google Scholar 

  • Mahajan A, Dua S (1998a) Role of enzymatic treatments in modifying the functional properties of rapeseed (Brassica campestris var. toria) meal. Int J Food Sci Nutr 49:435–440

    Article  CAS  Google Scholar 

  • Mahajan A, Dua S (1998b) Improvement of functional properties of rapeseed (Brassica campestris var toria) meal by reducing antinutritional factors employing enzymatic modification. Food Hydrocolloids 12:349–355

    Article  CAS  Google Scholar 

  • Martinez E, Duvnjak Z (2007) Decreade of the chlorogenic acid content in commercial sunflower meal using a polyphenol oxidase preparation secreted by the white-rot fungus Trametes versicolor ATCC 42530. J Sci Food Agric 87:2334–2341

    Article  CAS  Google Scholar 

  • Meza JC, Lomascolo A, Casalot L, Sigoillot J-C, Auria R (2005) Laccase production by Pycnoporus cinnabarinus grown on sugar-cane bagasse: influence of ethanol vapors as inducer. Process Biochem 40:3365–3371

    Article  CAS  Google Scholar 

  • Meza JC, Sigoillot J-C, Lomascolo A, Navarro D, Auria R (2006) New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a Vapor Phase Bioreactor. J Agric Food Chem 54:3852–3858

    Article  CAS  Google Scholar 

  • Meza JC, Auria R, Lomascolo A, Sigoillot J-C, Casalot L (2007) Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3 grown on sugarcane bagasse. Enzyme Microb Technol 41:162–163

    Article  CAS  Google Scholar 

  • Myers SJ, Cheetham PSJ, Banister NE (1996) Method of treating plant materials with hydrolytic enzymes. International Patent WO 96/39859

  • Parrado J, Bautista J (1993) Protein enrichment of sunflower lignocellulosic fraction by Trichoderma harzianum S/G2431 in low moisture content media. Biosci Biotech Biochem 57:317–318

    Article  CAS  Google Scholar 

  • Parrado J, Bautista J, Machado A (1991) Production of soluble enzymatic protein hydrolysate from industrially defatted nondehulled sunflower meal. J Agric Food Chem 39:447–450

    Article  CAS  Google Scholar 

  • Pointing SB, Parungao MM, Hyde KD (2003) Production of wood decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Mycol Res 107:231–235

    Google Scholar 

  • Rajoka MI, Huma T, Khalid AM, Latif F (2005) Kinetics of enhanced substrate consumption and endo-β-xylanase production by a mutant derivative of Humicola lanuginosa in solid-state fermentation. World J Microbiol Biotechnol 21:869–876

    Article  CAS  Google Scholar 

  • Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications: a review. Bioresour Technol 98:2000–2009

    Article  CAS  Google Scholar 

  • Rozan P, Villaume C, Bau HM, Schwertz A, Nicolas JP, Méjean L (1996) Detoxication of rapeseed meal by Rhizopus oligosporus sp-T3: a first step towards rapeseed protein concentrate. Int J Food Sci Technol 31:85–90

    Article  CAS  Google Scholar 

  • Sarada I, Sridhar P (1998) Nutritional improvement for Cephamycin C fermentation using a superior strain of Streptomyces clavuligerus. Process Biochem 33:317–322

    Article  CAS  Google Scholar 

  • Sarikaya A, Ladisch R (1997) An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems. Appl Biochem Biotechnol 62:71–85

    Article  CAS  Google Scholar 

  • Sarikaya A, Ladisch R (1999) Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus. Appl Biochem Biotechnol 82:1–15

    Article  CAS  Google Scholar 

  • Siddiqui IR, Wood P (1977) Carbohydrates of rapeseed: a review. J Sci Food Agric 28:530–538

    Article  CAS  Google Scholar 

  • Sircar A, Sridhar P, Das PK (1998) Optimization of solid state medium for the production of clavulnic acid by Streptomyces clavuligerus. Process Biochem 33:283–289

    Article  CAS  Google Scholar 

  • Thibault JF, Crepeau M-J, Quemeneur B (1989) Composition glucidique des graines de colza et de tournesol. Sciences des Aliments 9:405–412

    CAS  Google Scholar 

  • Vig AP, Walia A (2001) Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresour Technol 78:309–312

    Article  CAS  Google Scholar 

  • Vuorela S, Meyer A, Heinonen M (2004) Impact of isolation method on the antioxidant activity of rapeseed meal phenolics. J Agric Food Chem 52:8202–8207

    Article  CAS  Google Scholar 

  • Wang R, Shaarani SM, Godoy LC, Melikoglu M, Vergara CS, Koutinas A, Webb C (2010) Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme Microb Technol 47:77–83

    Article  CAS  Google Scholar 

  • Xu T (2000) Fermentation method for removing toxic substance from rapeseed cake. International Patent CN1242162 (A)

  • Yao D, Ji Z, Wang C, Qi G, Zhang L, Ma X, Chen S (2012) Co-producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10. World J Microbiol Biotechnol 28:985–991

    Article  CAS  Google Scholar 

  • Yeoman KH, Edwards C (1994) Protease production by Streptomyces thermovulgaris grown on rapemeal-derived media. J Appl Bacteriol 77:264–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Centre Technique Interprofessionnel des Oléagineux et du Chanvre (CETIOM, Pessac, France) and the Organisation Nationale Interprofessionnelle des Oléagineux (ONIDOL, Paris, France). The authors warmly thank Ms Corinne Peyronnet (ONIDOL, France) and Dr Jean-Luc Cayol (Aix-Marseille University, France) for participation and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Lomascolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomascolo, A., Uzan-Boukhris, E., Sigoillot, JC. et al. Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl Microbiol Biotechnol 95, 1105–1114 (2012). https://doi.org/10.1007/s00253-012-4250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4250-6

Keywords

Navigation